Mechanical Behavior and Fatigue in Polymeric Composites at Low Temperatures

  • Y. Katz
  • A. Bussiba
  • H. Mathias
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)


Advanced fiber reinforced polymeric composite materials are often suggested as structural materials at low temperature. In this study, graphite epoxy and Kevlar-49/epoxy systems were investigated. Fatigue behavior was emphasized after establishing the standard monotonic mechanical properties, including fracture resistance parameters at 77, 190, and 296 K. Tension-tension fatigue crack propagation testing was carried out at nominal constant stress intensity amplitudes using precracked compact tensile specimens. The crack tip damage zone was measured and tracked by an electro-potential device, opening displacement gage, microscopic observation, and acoustic emission activity recording. Fractographic and metallographic studies were performed with emphasis on fracture morphology and modes, failure processes, and description of sequential events. On the basis of these experimental results, the problem of fatigue resistance, including low temperature effects, is analyzed and discussed. The fundamental concepts of fatigue in composites are assessed, particularly in terms of fracture mechanics methods.


Stress Intensity Factor Acoustic Emission Fracture Mode Crack Opening Displacement Crack Open Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Williams and K. L. Reifsnider, J. Compos. Mater. 8:340–355 (1975).CrossRefGoogle Scholar
  2. 2.
    R. Papirno, J. Compos. Mater. 10:41–50 (1977).CrossRefGoogle Scholar
  3. 3.
    H. C. Kim and L. J. Ebert, J. Compos. Mater. 12:139–152 (1978).CrossRefGoogle Scholar
  4. 4.
    S. S. Wang, E. S. M. Chim, and N. M. Zahlan, J. Compos. Mater. 17:250–266 (1983).CrossRefGoogle Scholar
  5. 5.
    C. R. Wachnicki and J. C. Radon, Composites 15:211–216 (1984).CrossRefGoogle Scholar
  6. 6.
    F. H. Chang, D. E. Gordon, B. T. Rodini, and R. H. McDaniel, J. Compos. Mater. 10:182–192 (1976).CrossRefGoogle Scholar
  7. 7.
    C. E. S. Ueng, J. A. Aberson, and B. A. Lafitle, J. Compos. Mater. 11:222–234 (1977).CrossRefGoogle Scholar
  8. 8.
    Y. T. Yeow, D. H. Morris, and H. F. Brinson, Exper. Mech. 1–8 (1979).Google Scholar
  9. 9.
    S. G. Gaggar and L. J. Broutman, J. Compos. Mater. 9:216–227 (1975).CrossRefGoogle Scholar
  10. 10.
    R. L. Tobler and D. T. Read, J. Compos. Mat. 10:32–43 (1976).CrossRefGoogle Scholar
  11. 11.
    J. M. Toth, Jr., W. J. Bailey, and D. A. Boyce, in: “Fatigue at Low Temperatures,” R. L. Stephens, ed., STP 857, American Society for Testing and Materials, Philadelphia (1983), pp. 163–172.Google Scholar
  12. 12.
    Y. Katz, A. Bussiba, and H. Mathias, in: “Advances in Cryogenic Engineering — Materials,” vol. 30, Plenum Press, New York (1984) pp. 339–347.Google Scholar
  13. 13.
    S. Nishijima, T. Okada, and S. Namba, in: “Advances in Cryogenic Engineering — Materials,” vol. 30, Plenum Press, New York (1984), pp. 25–32.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Y. Katz
    • 1
  • A. Bussiba
    • 1
  • H. Mathias
    • 1
  1. 1.Nuclear Research Center-NegevBeer-ShevaIsrael

Personalised recommendations