Weldability and Mechanical Properties of Age-Hardened Fe-Ni-Cr-Mn-Ti Austenitic Alloy for Cryogenic Use

  • K. Hiraga
  • K. Nagai
  • T. Ogata
  • Y. Nakasone
  • T. Yuri
  • K. Ishikawa
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)

Abstract

The electron beam weldability and the low temperature mechanical and magnetic properties of Mn-modified iron-base superalloys have been investigated. Mn addition to an Fe-30Ni-13Cr-2.4Ti alloy suppressed the occurrence of ferromagnetism at 4.2K and did not cause any deleterious effects on the mechanical properties of the alloy and its weldability, i.e., the alloys containing from 3 to 9 mass% Mn were welded without any fusion zone hot cracking and HAZ micro-fissuring. The post-weld heat-treatment which consists of solutionizing followed by aging was very effective to diminish the strength mismatch between base metal and weld metal regions. The absorbed energy of impact specimens of weldments for both the as-welded and heat-treated conditions showed higher values than those of the base materials.

Keywords

Fatigue Furnace Weldability Manganese Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hiraga, K. Ishikawa, T. Ogata, and K. Nagai, Low temperature mechanical and physical properties of age-hardened Fe-Ni-Cr-Mn alloys, in: “Austenitic Steels at Low Temperatures,” R. P. Reed and T. Horiuchi, eds., Plenum Press, New York (1983), pp. 277–286.CrossRefGoogle Scholar
  2. 2.
    K. Hiraga and K. Ishikawa, Effects of manganese on microstructures of solution-treated Fe-Ni-Cr-Ti austenitic alloys, J. Jap. Inst. Met. 48:950–957 (1984).Google Scholar
  3. 3.
    K. Hiraga and K. Ishikawa, Effects of manganese on microstructures of aged Fe-Ni-Cr-Ti austenitic alloys, J. Jap. Inst. Met. 48:957–964 (1984).Google Scholar
  4. 4.
    W. A. Logsdon, P. K. Liaw, and M. H. Attar, Cryogenic fatigue crack growth rate properties of JBK-75 base and autogeneous tungsten arc weld metal, in: “Advances in Cryogenic Engineering—Materials,” vol. 30, Plenum Press, New York (1984), pp. 883–892.Google Scholar
  5. 5.
    J. A. Brooks, Progress toward a more weldable A-286, Weld. J. 53:242s–245s (1974).Google Scholar
  6. 6.
    J. A. Brooks, Effect of alloy modifications on HAZ cracking of A-286 stainless steel, Weld. J. 53:517s–523s (1974).Google Scholar
  7. 7.
    M. J. Strum, L. T. Summers, and J. W. Morris, Jr., The aging response of a welded iron-based superalloy, Weld. J. 62:235s–242s (1983).Google Scholar
  8. 8.
    R. Thamburaj, W. Wallace, and J. A. Goldak, Post-weld heat-treatment cracking in superalloys, Int. Met. Rev. 28:1–22.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. Hiraga
    • 1
  • K. Nagai
    • 1
  • T. Ogata
    • 1
  • Y. Nakasone
    • 1
  • T. Yuri
    • 1
  • K. Ishikawa
    • 1
  1. 1.Tsukuba LaboratoriesNational Research Institute for MetalsSakura-mura, Niihari-gun, IbarakiJapan

Personalised recommendations