Skip to main content

Characterization of Bulk and Multifilamentary Nb3Sn and Nb3Al by Diffractometric and Resistive Measurements

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 32))

Abstract

A series of bronze-processed Nb3Sn wires (binary and alloyed) and of powder metallurgically processed Nb3Al filaments were characterized by resistivity measurements. The composition profile across the layer was determined by Auger spectroscopy. Particular attention was given to the determination of the global composition profiles in both Nb3Sn and Nb3Al by means of diffractometric analysis in the stress-free state. The correlation between the lattice parameter and the chemical composition was the basis for a careful analysis of the shape of several strong diffraction lines. This relatively simple method gives a reliable picture of the overall composition profile. We have found that the indication of the average lattice parameter alone does not give a complete description of the real state of the layer because Bc2 is strongly correlated to variations in the composition. Therefore, the indication of the composition profile is necessary for understanding superconducting properties of the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. P. Charlesworth, I. Macphail, and P. E. Madsen, J. Mater. Sci. 5:580 (1970).

    Article  Google Scholar 

  2. H. Devantay, J. L. Jorca, M. Decroux, J. Muller, and R. Flükiger, J. Mater. Sci. 16: 2145 (1981).

    Article  Google Scholar 

  3. R. A. Schiffman and D. M. Bailey, Ames Laboratory Report, No. IS-J615, (1984).

    Google Scholar 

  4. Present work

    Google Scholar 

  5. J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Met. 75:227 (1980).

    Article  Google Scholar 

  6. R. Flükiger, J. L. Jorda, A. Junod and P. Fischer, Appl. Physics Comm. 1:9 (1981).

    Google Scholar 

  7. S. Foner and E. J. McNiff, Jr., Solid State Comm. 39:959 (1981).

    Article  Google Scholar 

  8. R. Flükiger, W. Schauer, W. Goldacker, in: “Superconductivity in d and f Band Metals,” W. Buckel and W. Weber, eds., Karlsruhe (1982), p. 41.

    Google Scholar 

  9. A. J. Arko, D. H. Lowndes, F. A. Müller, L. W. Roland, J. Wolfrat, H. W. Myron, R. M. Müller, and G. W. Webb, Phys. Rev. Lett. 40:1590 (1978).

    Article  Google Scholar 

  10. J. Kwo, R. H. Hammond and T. H. Geballe, J. Appl. Phys. 51:1726 (1980).

    Article  Google Scholar 

  11. T. P. Orlando, Phys. Rev. B19:4545 (1979).

    Google Scholar 

  12. S. Foner, in: High Field Magnetism,” North-Holland (1982), p. 133.

    Google Scholar 

  13. R. Flükiger, R. Isernhagen, W. Goldacker, and W. Specking, Adv. Cryo. Eng. 30:851 (1984).

    Google Scholar 

  14. L. J. Vieland and A. W. Wicklund, Phys. Lett. 34A:43 (1971).

    Google Scholar 

  15. K. Tachikawa, H. Sekine and Y. Iijima, J. Appl. Phys. 53:5354 (1982).

    Article  Google Scholar 

  16. W. Goldacker and R. Flükiger, Materials and mechanisms of superconductivity, to be published in Physica.

    Google Scholar 

  17. W. Goldacker and R. Flükiger, IEEE Trans. Magn., MAG-21:807 (1985).

    Google Scholar 

  18. R. Roberge, H. Lehuy, and S. Foner, Phys. Lett. 82A:259 (1981).

    Google Scholar 

  19. K. E. Kihlström, R. H. Hammond, J. Talvacchio, T. H. Geballe, A. K. Green and V. Rehn, J. Appl. Phys. 53:8907 (1982).

    Article  Google Scholar 

  20. R. Flükiger, J. L. Jorda, and J. Muller, to be published.

    Google Scholar 

  21. R. Flükiger, Ann. Chim. (Paris), Sci. Materiaux 9:841 (1984).

    Google Scholar 

  22. E. Drost, R. Flükiger and W. Specking, Cryogenics 24:622 (1984).

    Article  Google Scholar 

  23. R. Flükiger, Adv. Cryo. Eng. 28:399 (1982).

    Google Scholar 

  24. W. Kunz and E. Saur, Z. Phys. 189:401 (1966).

    Article  Google Scholar 

  25. J. Tafto, M. Suenaga, and D. O. Welch, J. Appl. Phys. 55:4330 (1984).

    Article  Google Scholar 

  26. E. Drost, W. Specking and R. Flükiger, IEEE Trans. Magn. MAG-21:281 (1985).

    Article  Google Scholar 

  27. J. W. Ekin, IEEE Trans. Magn. MAG-17:658 (1981).

    Article  Google Scholar 

  28. M. Suenaga, in “Superconducting Material Science-Metallurgy, Fabrication and Application,” S. Foner and B. B. Schwartz, eds. Plenum (1981).

    Google Scholar 

  29. H. Sekine, K. Tachikawa, and Y. Iwasa, Appl. Phys. Lett. 35:472 (1979).

    Article  Google Scholar 

  30. J. D. Livingston, Krist. Tech. 13:1379 (1978).

    Article  Google Scholar 

  31. C. R. Hunt and A. Rahman, Z. Metallk. 59:701 (1968).

    Google Scholar 

  32. K. Hemachalam and M. R. Pickus, IEEE Trans. Magn. MAG-13:466 (1977).

    Article  Google Scholar 

  33. S. Ceresara, M. V. Ricci, N. Sacchetti, and G. Sacerdoti, IEEE Trans. Magn. MAG-11:263 (1975).

    Article  Google Scholar 

  34. J. M. Larson, T. S. Luhman, and H. F. Merrick, Proc. Int. Conf., Port Chester, New York (8–10 Nov. 1976).

    Google Scholar 

  35. R. Akihama, R. J. Murphy, and S. Foner, Appl. Phys. Lett. 37:1107 (1980).

    Article  Google Scholar 

  36. S. Foner, Prog. Powder Metall. 38:107 (1982).

    Google Scholar 

  37. C. L. H. Thieme, S. Pourrahimi, B. B. Schwartz, and S. Foner, Appl. Phys. Lett. 44:260 (1984).

    Article  Google Scholar 

  38. R. Flükiger, S. Foner, E. J. McNiff Jr., and B. B. Schwartz, Appl. Phys. Lett. 34:763 (1979).

    Article  Google Scholar 

  39. J. B. Conway, A. C. Loskamp, Trans. AIME 236:702 (1966).

    Google Scholar 

  40. C. L. H. Thieme, H. Zhang, J. Otubo, S. Pourrahimi, B. B. Schwartz, and S. Foner, IEEE Trans. Magn. MAG-19:567 (1983).

    Article  Google Scholar 

  41. K. Togano and K. Tachikawa, J. Appl. Phys. 50:3495 (1979).

    Article  Google Scholar 

  42. W. King, C. L. H. Thieme, and S. Foner, IEEE Trans. Magn. MAG-21 (1985).

    Google Scholar 

  43. W. Goldacker and R. Flükiger, to be published.

    Google Scholar 

  44. J. M. Vandenberg, M. Hong, R. A. Hamm, and M. Gurvitch, J. Appl. Phys. 58:618 (1985).

    Article  Google Scholar 

  45. R. Bormann, H. U. Krebs, and A. O. Kent, Adv. Cryo. Eng. 32 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Flükiger, R., Goldacker, W., Isernhagen, R. (1986). Characterization of Bulk and Multifilamentary Nb3Sn and Nb3Al by Diffractometric and Resistive Measurements. In: Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9871-4_110

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9871-4_110

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9873-8

  • Online ISBN: 978-1-4613-9871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics