High Field NbN Superconductor on Carbon Fibers

  • M. Dietrich
  • C.-H. Dustmann
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 30)


Superconducting niobium nitride with a B1 structure is a good example of the powerfulness of using vapour deposition methods compared to conventional metallurgical processes. Since the discovery of Aschermann’, the superconducting transition temperature of NbN* remained fairly constant, whereas the critical magnetic field parameter, Bc2, for NbN ranged from 8 T for diffusion nitrided samples2 up to 50 T for physical vapour deposited (PVD) films3. This difference is the result of the ability to generate microstructures far removed from metallurgically processed materials. These microstructures have the desired side effect, that brittle compounds become more flexible. For a NbN film thickness of 7 μm, flexibility to a 5 mm bending radius without Tc degradation is reported4. Another recent result about strain effects on the critical current of NbN revealed no degradation to at least 0.7% strain5. It is well known that the simple B1 structure is insensitive to disorder and, therefore, superconductivity of NbN will not suffer much from neutron irradiation6.


Chemical Vapour Deposition Carbon Fiber Physical Vapour Deposit Plasma Activation Critical Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Aschermann, E. Frederick, and J. Krame, Physik. Z. 42, 340 (1941)Google Scholar
  2. 2.
    N. Pessall, C.K. Jones, H.A. Johansen, and J.K. Hulm, Appl. Phys. Lett. 7, 38 (1965)CrossRefGoogle Scholar
  3. 3.
    J.R. Gavaler, A.T. Santhanam, A.I. Braginski, M. Ashkin, and M.A. Janocko, IEEE Trans. on Mag., MAG-17, 573 (1981)Google Scholar
  4. 4.
    T. Akune, N. Sakamoto, and Y. Shibuya, Jap. J. Appl. Phys. 21, 772 (1982)CrossRefGoogle Scholar
  5. 5.
    J.W. Ekin, J.R. Gavaler, and J. Greff, Appl. Phys. Lett. 41, 996 (1982)CrossRefGoogle Scholar
  6. 6.
    D. Dew-Hughes and R. Jones, Appl. Phys. Lett. 36, 856 (1980)CrossRefGoogle Scholar
  7. 7.
    D. Schmidt and W. Jones, Chem. Eng. Progr. 58, 42 (1962)Google Scholar
  8. 8.
    L. Aggour, E. Fitzer, M. Heym, and E. Ignatowitz, Thin Solid Films, 40, 97 (1977)CrossRefGoogle Scholar
  9. 9.
    G.E. Pike, H.O. Pierson, A.W. Mullendove, and J.E. Schirber, Appl. Polym. Symp., 29, 71 (1976)Google Scholar
  10. 10.
    W.D. Smith, R.Y. Lin, and J. Economy, Appl. Polym. Symp. 29, 83 (1976)Google Scholar
  11. 11.
    T.L. Francavilla, S.A. Wolf, and E.F. Skelton, IEEE Trans. on Mag., MAG-17, 569 (1981)Google Scholar
  12. 12.
    Y. Brunet, J. Mazuer, and M. Renard, Cryogenics 107 (1979)Google Scholar
  13. 13.
    A. Aubert and J. Spitz, Thin Solid Films 96, 191 (1982)CrossRefGoogle Scholar
  14. 14.
    A.I. Braginski, M. Ashkin, J.R. Gavaler, and J. Greggi, U.S.Japan Workshop on High-Field Superconducting Materials for Fusion, San Diego (1983)Google Scholar
  15. 15.
    M. Dietrich, K. Brennfleck, E. Fitzer, Proc. of 8th Intern. Conf. CVD, ed. by J.M. Blocher, G.E. Vuillard, G. Wahl, Pennington N.Y., ppa 759–768 (1981)Google Scholar
  16. 16.
    K. Brennfleck, E. Fitzer, M. Dietrich, Proc. of 4th Europ. Conf. CVD, ed. by. J. Bloem, G. Verspui, L.R. Wolff, Eindhoven, The Netherlands, ppa 370–375 (1983)Google Scholar
  17. 17.
    E.L. Mc Kague, Q.E. Bullock, J.W. Head, J. Composite Materials 7, 288 (1973)CrossRefGoogle Scholar
  18. 18.
    K. Shimizu Toray (Japan) private communicationGoogle Scholar
  19. 19.
    A.R. Reinberg, Ann. Rev. Mater. Sci 9, 341 (1979)CrossRefGoogle Scholar
  20. 20.
    R. Bilenchi, I. Gianinoni, M. Musci, R. Murri, Proc. of 4th Europ. Conf. CVD, ed. by J. Bleom, G. Verspui, L.R. Wolff, Eindhofen, The Netherlands pp 370–375 (1983)Google Scholar
  21. 21.
    A.P. D’Silva, G.W. Rice, and V.A. Fassel, Appl. Spectroscopy 34, 578 (1 980)Google Scholar
  22. 22.
    unpublished resultsGoogle Scholar
  23. 23.
    Thermophysical Properties of Matter, Vol. 13, “Thermal Expansion”, IFI Plenum New York-WashingtonGoogle Scholar
  24. 24.
    P. Popper and I. Mohyuddin in: Special Ceramics 1964, 45, Academic Press, London and New York (1965)Google Scholar
  25. 25.
    E.J. Kramer, J. Appl. Phys. 44, 1360 (1973)CrossRefGoogle Scholar
  26. 26.
    F.Schmaderer, G. Wahl, C.H. Dustmann, and M. Dietrich, Proc. of 4th Europ. Conf. CVD, ed. by J. Bloem, G. Verspui, L.R. Wolff, Eindhoven, The Netherlands, pp 370–375Google Scholar
  27. 27.
    R. Flükiger, W. Specking, E. Drost, L. Oddi, Proc. ICMC9 Kobe (Japan) 11–14 May 1982, ed. K. Tachikawa and A. Clark, Butterworths, p. 75Google Scholar
  28. 28.
    Shipley process Cuposit CP-78–1Google Scholar
  29. 29.
    R. Heinecke, M. Cooke, R. Stern in Proc. of IVth Europ. CVD Conf. 1983, ed. by J. Bloem, G. Verspui, L.R. Wolff, Eindhoven, The Netherlands 1983, p. 119Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • M. Dietrich
    • 1
  • C.-H. Dustmann
    • 2
  1. 1.Kernforschungszentrum KarlsruheInstitut für Technische PhysikKarlsruheGermany
  2. 2.Brown, Boveri & Cie AGMannheimGermany

Personalised recommendations