Skip to main content

Transitions in Fatigue Processes at Low Temperature

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 30))

Abstract

Recently, a certain desire has been expressed in establishing a more coherent view on the fatigue behaviour at low temperature. Actually, the fulfilment of such a task seems now to be slightly easier. This has to be accounted to the increased number of studies regarding the fatigue crack extension stage at low temperature and the improved insight into related plastic flow and fracture topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Katz, A. Bussiba and H. Mathias, The Reflection of Warm prestressing on The Low-Temperature Fatigue Crack Growth, to be published in Fatigue at Low Temperature, STP, ASTM.

    Google Scholar 

  2. B. I. Verkin, N. M. Grinberg, V. A. Serdyuk and L. F. Yakovenko, Low-Temperature Fatigue Fracture Metals and Alloys, Mat. Sci. Eng. 58: 145 (1983).

    Google Scholar 

  3. Y. Katz, H. Mathias and S. Nadiy, Direct Observation at a harp Crack Tip Vicinity in Hydrogenated Austenitic Stainless Steel, in Fracture and Fatigue J. C. Radon Ed. Pergamon Press (1980).

    Google Scholar 

  4. H. Mathias, Y. Katz and S. Nadiv, Hydrogenation/Gas-Release Effects in Austenitic steels; Quantitative study, in Metal-Hydrogen System, T. N. Veziroglu Ed. Pergamon Press (1982).

    Google Scholar 

  5. Y. Katz, A. Bussiba and H. Mathias, The Influence of Austenite Stability on Fatigue Crack Growth Retardation, in, Materials Experimentation and Design in Fatigue, F. Sherrat and J. B. Sturgeon Eds. IPC Press (1981).

    Google Scholar 

  6. E. Tschegg and S. Stangle, Fatigue Crack Propagation and Threshold in BCC and FCC Metalls at 77 and 293K, Acta Met. 29: 33 (1981).

    Article  Google Scholar 

  7. W. W. Gerberich and N. Moody, Low-Temperature Fatigue Crack Propagation in, Fracture D.M.R. Tapline Ed. University Waterloo Press (1977).

    Google Scholar 

  8. P. K. Liaw and M. E. Fine, Fatigue Crack Propagation in 99.99+ and 1100 Aluminum at 298 and 77K, Met. Trans. 12A: 1927 (1981).

    Google Scholar 

  9. R. O. Ritchie, Influence of Microstructure on Near-Threshold Fatigue-Crack Propagation in Ultra-High Strength Steel, Metal Sci. 11: 386 (1977).

    Google Scholar 

  10. I. Le May and W.J.D. Shaw, Fatigue Crack Growth, in Fatigue Threshold, J. Backlund, A.F. Blom and C.J. Beevers Eds. Engineering Materials Advisory Services LTD., Warley, U.K. (1982).

    Google Scholar 

  11. H. Suzuki and A.J. McEvily, Microstructural Effects on Fatigue Crack Growth in a Low Carbon Steel. Met. Trans. 10A: 475 (1979).

    Article  Google Scholar 

  12. G.A. King, Effects of Grain Size and Microstructure on Threshold Values and Near Threshold Crack Growth in Powder-Formed Ni-Base Superalloy, Metal Sci. 16: 345 (1982).

    Article  Google Scholar 

  13. D.A. Curry, A Micromechanistic Approach to the Warm Pre-Stressing of Ferritic Steels, Int.J. Fracture 17: 335 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katz, Y., Bussiba, A., Mathias, H. (1984). Transitions in Fatigue Processes at Low Temperature. In: Clark, A.F., Reed, R.P. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9868-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9868-4_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9870-7

  • Online ISBN: 978-1-4613-9868-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics