Dynamic Young’s Modulus and Internal Friction in a Composite Material at Low Temperatures

  • T. Okada
  • S. Nishijima
  • K. Matsushita
  • T. Okamoto
  • H. Yamaoka
  • K. Miyata
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 30)

Abstract

Composite materials have important roles as insulating and structural materials for superconducting magnets. These materials must have good mechanical properties as well as good electrical insulating characteristics, because one of their important roles is transmitting stresses from windings to structural materials.

Keywords

Fatigue Epoxy Posite Methacrylate Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Kasen, Standardizing nonmetallic composite materials for cryogenic applications, in: “Nonmetallic Materials and Composites at Low Temperatures-2,” G. Hartwig and D. Evans, eds., Plenum Press, New York (1982), p. 327.CrossRefGoogle Scholar
  2. 2.
    G. Hartwig, Low-temperature properties of epoxy resins and composites, in: “Advances in Cryogenic Engineering,” Vol. 24, K. D. Timmerhaus, R. P. Reed, and A. F. Clark, eds., Plenum Press, New York (1978), p. 17.CrossRefGoogle Scholar
  3. 3.
    J. Heijboer and M. Pineri, Dynamic mechanical properties of poly (methacrylates) at low temperatures, in: “Nonmetallic Materials and Composites at Low Temperatures-2,” G. Hartwig and D. Evans, eds., Plenum Press, New York (1982), p. 89.CrossRefGoogle Scholar
  4. 4.
    H. M. Ledbetter, Dynamic elastic modulus and internal friction in G-10CR and G-11CR fibreglass-cloth-epoxy composites, Cryogenics 60: 637 (1980).CrossRefGoogle Scholar
  5. 5.
    H. M. Ledbetter and G. Maerz, Temperature dependence of Young’s modulus and internal friction of G-10CR and G-11CR epoxy resins, Cryogenics 60: 655 (1980).CrossRefGoogle Scholar
  6. 6.
    H. M. Ledbetter, Dynamic elastic modulus and internal friction in fibrous composites, in: “Nonmetallic Materials and Composites at Low Temperatures,” A. F. Clark, R. P. Reed, and G. Hartwig, eds., Plenum Press, New York (1979), p 267.CrossRefGoogle Scholar
  7. 7.
    A. Khalil and K. S. Han, Mechanical and thermal properties of glass-fiber-reinforced composites at cryogenic temperatures, in: “Advances in Cryogenic Engineering,” Vol. 28, R. P. Reed and A. F. Clark, eds., Plenum Press, New York (1982), p. 243.Google Scholar
  8. 8.
    T. Hirai and D. E. Kline, Dynamic mechanical properties of nonstoichiometric, amine-cured epoxy resin, J. Appl. Polym. 16:3145 (1972).CrossRefGoogle Scholar
  9. 9.
    T. Hirai and D. E. Kline, Dynamic mechanical properties of graphite-epoxy and carbon-epoxy composite, J. Comp. Mater. 7:160 (1973).CrossRefGoogle Scholar
  10. 10.
    J. J. Nevadunsky, J. J. Lucas, and M. J. Salkind, Early fatigue damage detection in composite materials, J. Comp. Mater. 9:394 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • T. Okada
    • 1
  • S. Nishijima
    • 1
  • K. Matsushita
    • 1
  • T. Okamoto
    • 1
  • H. Yamaoka
    • 2
  • K. Miyata
    • 2
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan
  2. 2.Research Reactor InstituteKyoto UniversityKumatori, OsakaJapan

Personalised recommendations