Skip to main content

A Review of Antifriction Materials and Design for Cryogenic Environments

  • Chapter
Advances in Cryogenic Engineering Materials

Abstract

Friction is the resistance to movement of contacting surfaces. Wear is the surface degradation and material loss that result from mechanical interaction. Friction and wear are closely associated, but there is no direct relationship. Thus, high friction implies high wear, but the conditions leading to minimum friction for a given sliding couple do not necessarily minimize wear.

Supported by NASA Langley Research Center, Hampton, Virginia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. P. Bowden and D. Tabor, Friction and Lubrication of Solids, Part I, Oxford University Press, London (1950).

    Google Scholar 

  2. F. P. Bowden and D. Tabor, Friction and Lubrication of Solids, Part II, Oxford University Press, London (1964).

    Google Scholar 

  3. E. E. Bisson, in Advanced Bearing Technology (E. E. Bisson and W. J. Anderson, eds.), NASA-SP-38, National Aeronautics and Space Administration, Cleveland, Ohio (1964), p. 289.

    Google Scholar 

  4. F. J. Clauss, in Materials for Missiles and Spacecraft (E. R. Parker, ed.), McGraw-Hill Book Company, New York (1963), p. 277.

    Google Scholar 

  5. H. W. Scibbe, “Bearings and Seals for Cryogenic Fluids,” NASA TM X-52415 (1968).

    Google Scholar 

  6. W. F. Hady, G. P. Allen, H. E. Sliney, and R. L. Johnson, “Friction, Wear, and Dynamic Seal Studies in Liquid Fluorine and Liquid Oxygen,” NASA TN D-2453 (1964).

    Google Scholar 

  7. Y. Iwasa, in Superconducting Machines and Devices (S. Foner and B. B. Schwartz, eds.), Plenum Press, New York (1974), p. 347.

    Google Scholar 

  8. G. W. K. Ford, in Gas Lubricated Bearings (N. S. Grassams and J. W. Powell, eds.), Butterworths, London (1964), p. 6.

    Google Scholar 

  9. M. W. Dietrich, D. P. Townsend, and E. V. Zaretsky, J. Lubr. Technol., Trans. ASME, 93(3):364 (1964).

    Article  Google Scholar 

  10. W. A. Wilson, K. B. Martin, J. A. Brennan, and B. W. Birmingham, in Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 245.

    Google Scholar 

  11. D. H. Tantam and R. Hargreaves, in Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 228.

    Google Scholar 

  12. I. Simon, H. O. McMahon, and R. J. Bowden, J. Appl. Phys. 22(2):177 (1951).

    Article  Google Scholar 

  13. D. W. Wisander, C. E. Maley, and R. L. Johnson, ASLE Trans. 2(1):58 (1959).

    Article  Google Scholar 

  14. R. F. King and D. Tabor, Proc. Phys. Soc. London, 66B:728 (1953).

    Google Scholar 

  15. B. A. Burton, J. A. Russell, and P. M. Ku, Wear, 5:60 (1962).

    Article  Google Scholar 

  16. F. P. Bowden and T. H. C. Childs, Nature, 219:1333 (1968).

    Article  Google Scholar 

  17. D. W. Wisander and R. L. Johnson, in Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1960), p. 71.

    Google Scholar 

  18. D. W. Wisander, “Lead, Indium, and Tin as Potential Lubricants in Liquid Hydrogen,” Technical Note No. NASA-TN-D-6455, National Aeronautics and Space Administration, Cleveland, Ohio (1971).

    Google Scholar 

  19. B. B. Baber, R. A. Burton, F. Chang, J. P. Cuellar, P. M. Ku, and J. A. Russell, “Lubrication Research and Test Method Development for Aerospace Propulsion Systems,” Report No. ASD-TDR-62-943, Southwest Research Institute, San Antonio, Texas (1962).

    Google Scholar 

  20. A. J. Stock, Lubr. Eng. 19:333 (1963).

    Google Scholar 

  21. D. W. Wisander and R. L. Johnson, in Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1961), p. 210.

    Google Scholar 

  22. D. W. Wisander, W. F. Hady, and R. L. Johnson, in Advances in Cryogenic Engineering, Vol. 3, Plenum Press, New York (1960), p. 390.

    Google Scholar 

  23. V. F. Afanasyev and D. M. Karpinos, “Antifriction Properties of Boron Nitride during Dry Friction in Gaseous Media and at Low Temperatures,” FTD HT 67 348, AD 673 802, Foreign Technology Division, Wright-Patterson AFB, Ohio (1967).

    Google Scholar 

  24. A. J. G. Allan and F. M. Chapman, Mater. Des. Eng. 48(4):106 (1958).

    Google Scholar 

  25. R. D. Pillsbury, Jr., “The Hows and Whys of Friction for Resins,” Journal of Teflon Reprint No. 19, E. I. DuPont DeNemours & Company, Wilmington, Delaware (1961).

    Google Scholar 

  26. L. D. Kharitonova, “Application and Friction Properties of Teflons at Low Temperatures,” FTD-MT-24-113-69, AD 695 894, Foreign Technology Division, Wright-Patterson AFB, Ohio (1969).

    Google Scholar 

  27. “Properties of Teflon at Cryogenic Temperatures,” Journal of Teflon Reprint No. 30, E. I. Du Pont De Nemours & Company, Wilmington, Delaware (1967).

    Google Scholar 

  28. L. H. Gillespie, D. O. Saxton, and F. M. Chapman, Mach. Des. 32:126 (1960).

    Google Scholar 

  29. L. H. Gillespie, D. O. Saxton, and F. M. Chapman, Mach. Des. 32:156 (1960).

    Google Scholar 

  30. D. W. Wisander and R. L. Johnson, “Friction and Wear of Nine Selected Polymers with Various Fillers in Liquid Hydrogen,” Technical Note D-5073, NASA N69 19800, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio (1969).

    Google Scholar 

  31. H. S. White, J. Res. Natl. Bur. Stand. 57(4):185 (1956).

    Google Scholar 

  32. R. P. Steijn, Met. Eng. Q. 7(2):9 (1967).

    Google Scholar 

  33. V. G. Timofeev, I. N. Drobinin, V. M. Grushevskii, and Y. D. Antropov, Chem. Pet. Eng. (USSR) 7(1):155 (1971).

    Article  Google Scholar 

  34. D. W. Wisander and R. L. Johnson, ASLE Trans. 3(2):255 (1960).

    Article  Google Scholar 

  35. H. E. Sliney, “Plasma-Sprayed, Self-Lubricating Coatings for Use from Cryogenic Temperatures to 870°C,” NASA-TM-X-71198, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio (1975).

    Google Scholar 

  36. G. P. McCleary, Lubr. Eng. 24:324 (1968).

    Google Scholar 

  37. P. D. Shynyrev and I. N. Drobinin, Chem. Pet. Eng. (USSR) 8(9):849 (1972).

    Article  Google Scholar 

  38. Y. Iwasa, R. Kensley, and J. E. C. Williams, IEEE Trans. Magn. MAG-15:36 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Tobler, R.L. (1980). A Review of Antifriction Materials and Design for Cryogenic Environments. In: Clark, A.F., Reed, R.P. (eds) Advances in Cryogenic Engineering Materials . Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9859-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9859-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9861-5

  • Online ISBN: 978-1-4613-9859-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics