Advertisement

Nb-Ti Alloy Superconductors—Present Status and Potential for Improvement

  • D. C. Larbalestier

Abstract

Nb-Ti alloys were first introduced for superconductivity about 15 years ago with the titanium-rich alloy Nb 65 wt.% Ti (Ti 22 at.% Nb). Compared with existing Nb-Zr alloys, this alloy possessed the twin advantages of better ductility and greater compatibility with copper. With the realization in the late sixties that many conductor instabilities could be eliminated by subdividing and twisting the superconductor, the emphasis shifted to more ductile compositions of Nb-Ti, and Nb 65 wt.% Ti gave way to more niobium-rich alloys, containing about Nb 45 wt.% Ti. Most of the development of filamentary Nb-Ti conductors then was stimulated by high-energy physics (HEP), whose principal requirement was pulsed accelerator magnets. The conductor for such magnets contains many strands; each is small (<1 mm) and contains many 10- to 15-μm-diameter filaments. The critical current density, J c , of the conductor is optimized for use at 5 T and 4.2 to 4.5 K. By the use of rather empirical methods, the current density of the standard United States alloy Nb 46.5 wt.% Ti (Ti 37 at.% Nb) was steadily developed to reach 1800 to 2000 A/mm2 at 5 T and 4.2 K in fine-filament conductors.

Keywords

Cold Work Critical Current Density Critical Field Area Reduction Final Heat Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Mclnturff, Chap. 3 in The Metallurgy of Superconducting Materials (T. Luhman and D. Dew-Hughes, eds.), Academic Press, New York (1979).Google Scholar
  2. 2.
    Constitution of Binary Alloys (M. Hansen, ed.) and First Supplement (R. P. Elliott, ed.), McGraw-Hill, New York (1958 and 1965).Google Scholar
  3. 3.
    P. H. Bellin, H. C. Gatos, and V. Sadogapan, J. Appl. Phys. 40:3984 (1969).CrossRefGoogle Scholar
  4. 4.
    M. Suenaga and R. M. Rails, J. Appl. Phys. 40:4457 (1969).CrossRefGoogle Scholar
  5. 5.
    J. K. Hulm and R. D. Blaugher, Phys. Rev. 123:1569 (1961).CrossRefGoogle Scholar
  6. 6.
    H. Hillmann and K. J. Best, IEEE Trans. Magn. MAG-13:1568 (1977).CrossRefGoogle Scholar
  7. 7.
    D. G. Hawksworth and D. C. Larbalestier, in Advances in Cryogenic Engineering, Vol. 26, Plenum Press, New York (1980), p. 479.Google Scholar
  8. 8.
    P. H. Bellin, H. C. Gatos, and V. Sadagopan, J. Appl. Phys. 41:2057 (1970).CrossRefGoogle Scholar
  9. 9.
    Y. Shapira and L. Neuringer, Phys. Rev. 140A:1638 (1965).CrossRefGoogle Scholar
  10. 10.
    R. M. Rails, Phys. Lett. 23:29 (1966).CrossRefGoogle Scholar
  11. 11.
    R. G. Hampshire and M. T. Taylor, J. Phys. F 2:89 (1972).CrossRefGoogle Scholar
  12. 12.
    D. F. Neal, A. C. Barber, A. Woolcock, and J. A. F. Gidley, Acta Metall. 19:143 (1971).CrossRefGoogle Scholar
  13. 13.
    A. F. Clark and R. L. Powell, Cryogenics 18:137 (1978).CrossRefGoogle Scholar
  14. 14.
    B. P. Strauss, R. H. Remsbottom, and R. H. Flora, in Proceedings of 7th Symposium on Engineering Problems of Fusion Research, IEEE Publication No. 77CH1267-4-NPS 1271, Institute of Electrical and Electronic Engineers, New York (1977), p. 29.Google Scholar
  15. 15.
    D. A. Colling, T. A. de Winter, W. K. McDonald, and W. C. Turner, IEEE Trans. Magn. MAG-13:848 (1977).CrossRefGoogle Scholar
  16. 16.
    P. R. Critchlow, E. Gregory, and B. Zeitlin, Cryogenics 11:3 (1971).CrossRefGoogle Scholar
  17. 17.
    A. W. West and D. C. Larbalestier, in Advances in Cryogenic Engineering, Vol. 26, Plenum Press, New York (1980), p. 471.Google Scholar
  18. 18.
    I. Pfeiffer and H. Hillmann, Acta Metall. 16:1429 (1968).CrossRefGoogle Scholar
  19. 19.
    R. Arndt and R. Ebeling, Z. Metallkd. 65:364 (1974).Google Scholar
  20. 20.
    J. Willbrand and R. Ebeling, Metall (Berlin) 29:677 (1965).Google Scholar
  21. 21.
    J. Willbrand and W. Schlump, Z. Metallkd. 66:714 (1975).Google Scholar
  22. 22.
    H. Hillmann, Metall (Berlin) 8:1 (1973).Google Scholar
  23. 23.
    J. B. Vetrano and R. W. Boom, J. Appl. Phys. 36:1179 (1965).CrossRefGoogle Scholar
  24. 24.
    D. Kramer and C. Rhodes, Trans. AIME 236:1612 (1967).Google Scholar
  25. 25.
    B. A. Hatt and V. G. Rivlin, J. Phys. D 1:1145 (1968).CrossRefGoogle Scholar
  26. 26.
    A. D. Mclnturff and G. Chase, J. Appl. Phys. 44:2378 (1973).CrossRefGoogle Scholar
  27. 27.
    H. R. Segal, K. Hemachalam, T. A. De Winter, and J. J. Stekly, IEEE Trans. Magn. MAG-15:807 (1979).CrossRefGoogle Scholar
  28. 28.
    K. F. Hwang and D. C. Larbalestier, IEEE Trans. Magn. MAG-15:400 (1979).CrossRefGoogle Scholar
  29. 29.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178:657 (1969).CrossRefGoogle Scholar
  30. 30.
    E. J. Kramer, J. Appl. Phys. 44:1360 (1973).CrossRefGoogle Scholar
  31. 31.
    E. J. Kramer, J. Electron. Mater. 4:839 (1975).CrossRefGoogle Scholar
  32. 32.
    J. B. Pearson and R. M. Rose, Metall. Trans. 1:377 (1970).CrossRefGoogle Scholar
  33. 33.
    D. C. Hill and R. M. Rose, Metall. Trans. 2:585 (1971).CrossRefGoogle Scholar
  34. 34.
    See for example B. B. Goodman, Reports on Progress in Physics 49:445 (1966).CrossRefGoogle Scholar
  35. 35.
    R. R. Hake, Phys. Rev. 158:356 (1967).CrossRefGoogle Scholar
  36. 36.
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147:295 (1966).CrossRefGoogle Scholar
  37. 37.
    E. M. Savitskii, V. V. Baron, V. V. Efimov, M. I. Bychkova, and L. F. Myzenkova, Superconducting Materials, Plenum Press, New York (1973).Google Scholar
  38. 38.
    N. E. Alekseevski, O. S. Ivanov, I.I. Raevskii, and N. V. Stepanov, Sov. Phys. Dokl. 12:898 (1968).Google Scholar
  39. 39.
    T. Horiuchi, Y. Monju, and N. Nagai, J. Jpn. Inst. Met. 37:882 (1973).Google Scholar
  40. 40.
    B. G. Lazarev, O. N. Ovcharenko, A. A. Matsakova, and V. G. Voltoskaya, in Proceedings of the Second and Third Conferences on Metallurgy, Physical Chemistry, and Mftal Physics of Superconductors (E. M. Savitskii and V. V. Baron, eds.), Plenum Press, New York (1970), p. 86.Google Scholar
  41. 41.
    R. M. Rails and R. M. Rose, Massachusetts Institute of Technology, Cambridge, Massachusetts, unpublished data.Google Scholar
  42. 42.
    D. G. Hawksworth and D. C. Larbalestier, to be published.Google Scholar
  43. 43.
    B. P. Strauss, Magnetic Corporation of America, Waltham, Massachusetts, private communication.Google Scholar
  44. 44.
    C. W. Curtis and W. K. McDonald, IEEE Trans. Magn. MAG-15:768 (1979).CrossRefGoogle Scholar
  45. 45.
    H. Segal and T. A. de Winter, to be published.Google Scholar
  46. 46.
    J. Wollan, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, private communication.Google Scholar
  47. 47.
    W. A. Fietz, R. E. McDonald, and J. R. Miller, in Proceedings of 7th Symposium on Engineering Problems of Fusion Research, IEEE Publication No. 77CH1267-4-NPS 1271, Institute of Electrical and Electronic Engineers, New York (1977), p. 256.Google Scholar
  48. 48.
    B. P. Strauss, R. H. Remsbottom, P. J. Reardon, C. W. Curtis, and W. K. McDonald, IEEE Trans. Magn. MAG-13:487 (1977).CrossRefGoogle Scholar
  49. 49.
    T. E. Cordier and W. K. McDonald, IEEE Trans. Magn. MAG-11:280 (1975).CrossRefGoogle Scholar
  50. 50.
    T. G. Berlincourt and R. R. Hake, Phys. Rev. 131:140 (1963).CrossRefGoogle Scholar
  51. 51.
    E. W. Collings, Phys. Rev. B 9:3989 (1974).CrossRefGoogle Scholar
  52. 52.
    C. C. Koch and D. S. Easton, Cryogenics 17:391 (1977).CrossRefGoogle Scholar
  53. 53.
    C. Baker, Met. Sci. J. 5:92 (1971).CrossRefGoogle Scholar
  54. 54.
    D. S. Easton and C. C. Koch, in Shape Memory Effects in Alloys (J. Perkins, ed.), Plenum Press, New York (1975), p. 431.Google Scholar
  55. 55.
    G. Pasztor and C. Schmidt, J. Appl. Phys. 49:886 (1978).CrossRefGoogle Scholar
  56. 56.
    D. T. Read, Cryogenics 18:579 (1978).CrossRefGoogle Scholar
  57. 57.
    D. Evans, Report No. RL-73-092, Rutherford Laboratory, Chilton, Didcot, England (1973).Google Scholar
  58. 58.
    D. Pattanayak, Kernforschungszentrum Karlsruhe, Karlsruhe, West Germany, private communication.Google Scholar
  59. 59.
    F. Farmer, Imperial Metals Industry, Birmingham, England, private communication.Google Scholar
  60. 60.
    A. W. West and D. C. Larbalestier, to be published.Google Scholar
  61. 61.
    J. Purcell, General Atomic Co., San Diego, California, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. C. Larbalestier
    • 1
  1. 1.University of Wisconsin—MadisonMadisonUSA

Personalised recommendations