Skip to main content

Elastic Constants at Low Temperatures: Recent Measurements on Technological Materials at NBS

  • Chapter

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 24))

Abstract

Solid-state low-temperature elastic properties have been studied experimentally at the NBS Cryogenics Division for four years [1–18]. Most studies were between room temperature and liquid-helium temperature; some were only to liquid-nitrogen temperature. In this paper these studies are reviewed for 47 technological materials—metals, alloys, and composites—listed in Table I. Elastic constants primarily discussed are Young’s modulus, the shear modulus, the bulk modulus (reciprocal compressibility), and Poisson’s ratio. Young’s modulus, E, the shear modulus, G, and the bulk modulus, B, are the elastic resistances to uniaxial, shear or torsional, and hydrostatic stresses, respectively. All these moduli have units of stress. Poisson’s ratio, ν, is the dimensionless negative ratio of transverse strain to longitudinal strain under uniaxial stress.

Invited paper.

Sponsored by Advanced Research Projects Agency, Maritime Administration, and NASA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B:

bulk modulus

C:

general elastic-stiffness constant

E:

Young’s modulus

e/a:

electron/atom ratio

f:

frequency

G:

shear or torsional modulus

l:

specimen length

s:

parameter in Varshni equation

t:

transit time, Einstein temperature

T:

temperature, Kelvin

v:

sound velocity

V:

voltage

λ:

wavelength

ν:

Poisson’s ratio

ρ:

mass density

d:

driver

g:

gauge

t:

transverse

References

  1. H. M. Ledbetter, unpublished studies, Cryogenics Division, NBS Institute for Basic Standards, Boulder, Colorado.

    Google Scholar 

  2. E. R. Naimon, H. M. Ledbetter, and W. F. Weston, J. Mater. Sci. 10:1309 (1975).

    Article  Google Scholar 

  3. D. T. Read and H. M. Ledbetter, J. Eng. Mater. Technol. 99:181 (1977).

    Article  Google Scholar 

  4. W. F. Weston and H. M. Ledbetter, in Ultrasonic Symposium Proceedings, IEEE 75Ch8994-4SU, New York (1975), p. 623.

    Google Scholar 

  5. H. M. Ledbetter, Metall. Trans. 8A:1006 (1977).

    Google Scholar 

  6. H. M. Ledbetter, Z. Metallkd. 68:506 (1977).

    Google Scholar 

  7. H. M. Ledbetter and D. T. Read, Metall. Trans. 8A:1805 (1977).

    Google Scholar 

  8. W. F. Weston, H. M. Ledbetter, and E. R. Naimon, Mater. Sci. Eng. 20:185 (1975).

    Article  Google Scholar 

  9. E. R. Naimon, W. F. Weston, and H. M. Ledbetter, Cryogenics 14:246 (1974).

    Article  Google Scholar 

  10. W. F. Weston, E. R. Naimon, and H. M. Ledbetter, in Materials for Liquefied Natural Gas Tankage, ASTM STP 579 (1975), p. 397.

    Google Scholar 

  11. H. M. Ledbetter, W. F. Weston, and E. R. Naimon, J. Appl. Phys. 46:3855 (1975).

    Article  Google Scholar 

  12. W. F. Weston and H. M. Ledbetter, Mater. Sci. Eng. 20:287 (1975).

    Article  Google Scholar 

  13. H. M. Ledbetter, E. R. Naimon, and W. F. Weston, in Advances in Cryogenic Engineering, Volume 22, Plenum Press, New York (1975), p. 174.

    Google Scholar 

  14. H. M. Ledbetter, Mater. Sci. Eng. 29:255 (1977).

    Article  Google Scholar 

  15. D. T. Read and H. M. Ledbetter, J. Appl. Phys. 48:2827 (1977).

    Article  Google Scholar 

  16. W. F. Weston, J. Appl. Phys. 46:4458 (1975).

    Article  Google Scholar 

  17. H. M. Ledbetter and D. T. Read, J. Appl. Phys. 48:1874 (1977).

    Article  Google Scholar 

  18. D. T. Read and H. M. Ledbetter, Composites 9:100 (1978).

    Article  Google Scholar 

  19. G. Sines, Elasticity and Strength, Allyn and Bacon, Boston (1969).

    Google Scholar 

  20. B. Boley and J. Weiner, Theory of Thermal Stresses, John Wiley and Sons, New York (1960).

    Google Scholar 

  21. J. F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, England (1973), p. 1.

    Google Scholar 

  22. H. M. Ledbetter, J. Appl. Phys. 44:1451 (1973).

    Article  Google Scholar 

  23. R. E. Barker, J. Appl. Phys. 34:107 (1963).

    Article  Google Scholar 

  24. M. Blackman, Proc. Phys. Soc. A 64:681 (1951).

    Article  Google Scholar 

  25. P. G. Klemens, in Solid State Physics, Vol. 7 (F. Seitz and D. Turnbull, eds.), Academic Press, New York (1958). p. 46.

    Google Scholar 

  26. A. D. LeClaire, Acta Metall. 1:438 (1953).

    Article  Google Scholar 

  27. M. Blackman, in Handbuch der Physik, Vol. VII-1, Springer-Verlag, Berlin (1955), p. 341.

    Google Scholar 

  28. C. Domb and L. Salter, Philos. Mag. 43:1038 (1952).

    Google Scholar 

  29. I. S. Radovskii, J. Appl. Mech. Tech. Phys. 7:175 (1966).

    Google Scholar 

  30. P. Debye, Ann. Phys. 39:789 (1912).

    Article  Google Scholar 

  31. J. DeLaunay and R. L. Dolecek, Phys. Rev. 72:141 (1947).

    Article  Google Scholar 

  32. D. Pines, Elementary Excitations in Solids, Benjamin, New York (1963), p. 34.

    Google Scholar 

  33. H. Warlimont, G. Hausch, A. Prasetyo, and F. Reynard, in New Aspects of Martensitic Transformations, Japan Institute of Metals, Kobe (1976), p. 153.

    Google Scholar 

  34. K. Mukherjee, Philos. Mag. 12:915 (1965).

    Article  Google Scholar 

  35. E. S. Fisher and C. R. Alfred, Trans. Met. Soc. AIME 242:1575 (1968).

    Google Scholar 

  36. S. F. Pugh, Philos. Mag. 45:823 (1954).

    Google Scholar 

  37. J. J. Gilman, Aust. J. Phys. 13:327 (1960).

    Article  Google Scholar 

  38. R. L. Fleischer, Acta Metall. 11:203 (1963).

    Article  Google Scholar 

  39. C. Zener, Acta Crystallogr. 2:163 (1949).

    Article  Google Scholar 

  40. M. M. Khruschov, Wear 28:69 (1974).

    Article  Google Scholar 

  41. A. Kelly, Strong Solids, Clarendon, Oxford, England (1966), p. 1.

    Google Scholar 

  42. G. Leibfried, in Diffusion in Body-Centered Cubic Metals, ASM, Metals Park, Ohio (1965), p. 108.

    Google Scholar 

  43. A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T. Stewart, and R. Bowers, Phys. Rev. 128:1112 (1962).

    Article  Google Scholar 

  44. K. Lonsdale, Acta Crystallogr. 1:142 (1948).

    Article  Google Scholar 

  45. R. W. James, The Optical Principles of the Diffraction of X-rays, Bell, London, England (1954), p. 215.

    Google Scholar 

  46. H. A. Jahn, Proc. R. Soc. London A 179:320 (1941).

    Google Scholar 

  47. W. M. Visscher, Ann. Phys. 9:194 (1960).

    Article  Google Scholar 

  48. C. S. G. Cousins, J. Phys. C. 2:765 (1969).

    Article  Google Scholar 

  49. H. J. McSkimin, J. Acoust. Soc. Am. 33:12 (1961).

    Article  Google Scholar 

  50. J. Marx, Rev. Sci. Instrum. 22: 503 (1951).

    Article  Google Scholar 

  51. E. R. Fuller, A. V. Granato, J. Holder, and E. R. Naimon, in Methods of Experimental Physics, Academic Press, New York (1974), p. 405.

    Google Scholar 

  52. Y. P. Varshni, Phys. Rev. B. 2:3952 (1970).

    Article  Google Scholar 

  53. H. M. Ledbetter, Mater. Sci. Eng. 27:133 (1977).

    Article  Google Scholar 

  54. S. G. Fedotov and P. K. Belousov, Fiz. Met. Metalloved. 17:732 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ledbetter, H.M. (1978). Elastic Constants at Low Temperatures: Recent Measurements on Technological Materials at NBS. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9853-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9853-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9855-4

  • Online ISBN: 978-1-4613-9853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics