Dielectric Loss Spectrum of Hydrated Vitreous Silica

  • J. le G. Gilchrist
  • W. Meyer
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 24)


The dielectric properties of all insulating materials at liquid helium temperatures are sensitive to the presence of certain impurities. The hydroxyl group as an impurity is known to have a very strong influence on the low-temperature dielectric properties of three widely differing materials: the alkali halides, polyethylene, and vitreous silica. In the highly ionic and crystalline alkali halide salts, OH substitutes for an anion and can reorient under the influence of an electric field down to temperatures less than 1 K [1,2]. In the almost purely covalent and semicrystalline polyethylene, two known dielectric relaxations have each been associated with an OH group [3–6], and it is possible that impurity OH groups may also be involved in the low-temperature dielectric behavior of other, more amorphous polymers. In the semiionic, semicovalent compound silica in the vitreous state, water can combine at broken bond defects, forming hydroxyl pairs whose spectrum includes a weakly Raman, but strongly infrared active mode around 30 cm−1 [7]. Hydroxyl content has been shown to weakly influence the low-frequency ambient temperature dielectric constant of vitreous silica [8], but it strongly influences the low-temperature dielectric loss at 100 kHz [9] and 1 kHz [10] and the dielectric constant variation at 11 GHz [11]. In this study, the low-temperature loss angle, δ, was determined over a wide spectral range to further examine the incidence of this characteristic impurity on the dielectric response of a noncrystalline solid.


Dielectric Relaxation Alkali Halide Wide Spectral Range Loss Angle Vitreous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Kuhn and F. Lüty, Solid State Comm. 2:281 (1964).CrossRefGoogle Scholar
  2. 2.
    W. Känzig, H. R. Hart, and S. Roberts, Phys. Rev. Lett. 13:543 (1964).CrossRefGoogle Scholar
  3. 3.
    P. S. Vincett, J. Phys. D 2:699 (1969).CrossRefGoogle Scholar
  4. 4.
    W. A. Phillips, Proc. R. Soc. London Ser. A 319:565 (1970).CrossRefGoogle Scholar
  5. 5.
    R. A. J. Carson, Proc. R. Soc. London Ser. A 332:255 (1973).CrossRefGoogle Scholar
  6. 6.
    J. le G. Gilchrist, J. Phys. Chem. Solids 38:509 (1977).CrossRefGoogle Scholar
  7. 7.
    R. H. Stolen and G. E. Walrafen, J. Chem. Phys. 64:2623 (1976).CrossRefGoogle Scholar
  8. 8.
    C. Andeen, D. Schuele, and J. Fontanella, J. Appl. Phys. 45:1071 (1974).CrossRefGoogle Scholar
  9. 9.
    R. E. Jaeger, J. Amer. Ceramic Soc. 51: 57 (1968).CrossRefGoogle Scholar
  10. 10.
    S. H. Mahle and R. D. McCammon, Phys. Chem. Glasses 10:222 (1969).Google Scholar
  11. 11.
    M. von Schickfus and S. Hunklinger, J. Phys. C 9:L439 (1976).CrossRefGoogle Scholar
  12. 12.
    W. Meyer, in Proceedings 7th European Microwave Conference, Copenhagen, Denmark (1977), to be published.Google Scholar
  13. 13.
    W. Meyer, Elect. Lett. 13:7 (1977).CrossRefGoogle Scholar
  14. 14.
    G. A. Reymann and F. Lüty, Phys. Status Solidi: A 16:561 (1973).CrossRefGoogle Scholar
  15. 15.
    E. M. Amrhein, Glastech Ber. 43:1 (1970).Google Scholar
  16. 16.
    W. B. Westphal and A. Sils, Technical Report AFML-TR-72-39, Massachusetts Institute of Technology, Cambridge, Massachusetts (1972), p. 83.Google Scholar
  17. 17.
    E. M. Amrhein and H. Heil, J. Phys. Chem. Solids 32:1925 (1971).CrossRefGoogle Scholar
  18. 18.
    J. M. Stevels, Glastech. Ber. 26:227 (1953).Google Scholar
  19. 19.
    E. M. Amrhein and H. Heil, Kolloid-Z. Z. Polym. 241:1051 (1970).CrossRefGoogle Scholar
  20. 20.
    W. Bagdade and R. Stolen, J. Phys. Chem. Solids 29:2001 (1968).CrossRefGoogle Scholar
  21. 21.
    R. Pire and B. G. Dick, Collective Phenomena 2:41 (1975).Google Scholar
  22. 22.
    W. A. Phillips, J. Low Temp. Phys. 7:351 (1972).CrossRefGoogle Scholar
  23. 23.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25:1 (1972).CrossRefGoogle Scholar
  24. 24.
    K. K. Mon, Y. J. Chabal, and A. J. Sievers, Phys. Rev. Lett. 35:1352 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. le G. Gilchrist
    • 1
  • W. Meyer
    • 2
  1. 1.Centre de Recherches sur les Très Basses TempératuresGrenoble CedexFrance
  2. 2.Technische Universität BraunschweigBraunschweigWest Germany

Personalised recommendations