Advertisement

Nb3Ge and Nb3Sn Films Prepared by High-Rate Magnetron Sputtering

  • R. T. Kampwirth
  • C. T. Wu
  • J. W. Hafstrom
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 24)

Abstract

During the past several years, considerable effort has been put into the fabrication of A15 superconductors, with particular emphasis on Nb3Sn and Nb3Ge. Nb3Ge probably cannot be produced by bulk fabrication or diffusion processes, which are successful with Nb3Sn, due to the metastable nature of the high critical temperature A15 phase, and thus must be “frozen in” at high temperatures by methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or low-energy sputtering. The latter technique has produced Nb3Ge films with the highest critical temperature, T c , and best self-field critical current density, J c . A variation on the low-energy sputtering technique is discussed, wherein a magnetic field in the vicinity of the sputtering target alters the plasma characteristics in such a way that deposition rates are enhanced (up to 1 µm/min) at very low operating voltages (≤400V dc). Then sputter deposition is competitive with CVD. This technique is capable of producing very high quality Nb3Sn films and Nb3Ge films with T c ≥21.5 K. By suitable adjustment of the sputtering parameters, it is possible to alter the microstructure and surface characteristics. The effect of controlled amounts of oxygen in the sputtering gas on the T c of Nb3Ge is described.

Keywords

Sticking Coefficient High Critical Temperature Chemical Vapor Deposition Film Transition Temperature Width Versus Potential Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notation

a0

lattice parameter

H

external magnetic field

Hc2

upper critical field

Jc

self-field critical current density

PO2

partial pressure of oxygen

T

temperature

Tc

critical temperature, onset of superconductivity

Tg

sputtering gas temperature

Ts

deposition temperature

Greek symbols

ΔTc

transition temperature width

ρ

resistivity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Hoffman, Solid State Technol. 20(12):57 (1976).Google Scholar
  2. 2.
    R. T. Kampwirth, J. W. Hafstrom, and C. T. Wu, IEEE Trans. Magn. MAG-13(1):315 (1977).CrossRefGoogle Scholar
  3. 3.
    C. T. Wu and R. T. Kampwirth, to be published.Google Scholar
  4. 4.
    N. R. Werthanner, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147:295 (1966).CrossRefGoogle Scholar
  5. 5.
    J. R. Gavaler, Appl. Phys. Lett. 23(8):480 (1973).CrossRefGoogle Scholar
  6. 6.
    L. R. Testardi, J. H. Wernick, and W. A. Royer, Solid State Commun. 15:1 (1974).CrossRefGoogle Scholar
  7. 7.
    N. Chencinski and F. J. Cadieu, J. Low Temp. Phys. 16:507 (1974).CrossRefGoogle Scholar
  8. 8.
    F. J. Cadieu and N. Chencinski, IEEE Trans. Magn. MAG-11(2):227 (1975).CrossRefGoogle Scholar
  9. 9.
    C. T. Wu, R. T. Kampwirth, and J. W. Hafstrom, J. Vac. Sci. Technol. 14(1): 134 (1977).CrossRefGoogle Scholar
  10. 10.
    R. E. Howard, C. N. King, R. H. Norton, R. B. Zubeck, T. W. Barbee, and R. H. Hammond, in: Advances in Cryogenic Engineering, Vol. 22, Plenum Press, New York (1977), p. 332.CrossRefGoogle Scholar
  11. 11.
    J. F. Bussiere, IEEE Trans. Magn. MAG-13(1):131 (1977).CrossRefGoogle Scholar
  12. 12.
    A. I. Braginski and G. W. Roland, Appl. Phys. Lett. 25:762 (1974).CrossRefGoogle Scholar
  13. 13.
    L. R. Newkirk, F. A. Valencia, A. I. Giorgi, E. G. Szklarz, and T. C. Wallace, IEEE Trans. Magn. MAG-11(2):221 (1975).CrossRefGoogle Scholar
  14. 14.
    R. T. Kampwirth, C. T. Wu, and J. W. Hafstrom, Bull. Amer. Phys. Soc. 22(3):455 (1977).Google Scholar
  15. 15.
    J. R. Gavaler, J. W. Miller, and B. R. Appleton, Appl. Phys. Lett. 28(4):237 (1976).CrossRefGoogle Scholar
  16. 16.
    R. A. Sigsbee, Appl. Phys. Lett. 29(3):211 (1977).CrossRefGoogle Scholar
  17. 17.
    A. B. Hallak, R. H. Hammond, and T. H. Geballe, Appl. Phys. Lett. 29(5):314 (1977).CrossRefGoogle Scholar
  18. 18.
    M. R. Daniel, A. I. Braginski, G. W. Roland, J. R. Gavaler, R. J. Bartlett, and L. R. Newkirk, J. Appl. Phys. 48(3): 1293 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • R. T. Kampwirth
    • 1
  • C. T. Wu
    • 1
  • J. W. Hafstrom
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations