Skip to main content

Properties of Superconducting Nb3Sn Layers Used in RF Cavities

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 24))

Abstract

In recent years thin Nb3Sn coatings have shown quite promising results for rf applications in the superconducting state [1–6]. These layers were grown in carefully prepared pure niobium rf cavities by heating them in a saturated tin vapor at a temperature of 1050°C for several hours. This procedure results in coatings several microns thick, consisting of Nb3Sn single crystal columns about 1 µm in diameter [3–5]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B c :

thermodynamic critical field

B c2 :

upper critical field

B DC :

stationary magnetic field

B crit :

rf critical magnetic field

E p :

peak electric field at the cavity surface

ƒ:

frequency

F p :

volume pinning force

j c :

critical current density

k:

Boltzmann constant

l:

mean free path

R(T):

measured surface resistance

R BCS :

surface resistance, as described by the BCS theory

R res :

residual surface resistance

T c :

transition temperature

2Δ:

energy gap

Δb :

screening field

λl :

London penetration depth

ξgl :

Ginzburg-Landau coherence length

ξ0 :

BCS coherence length

References

  1. B. Hillenbrand, H. Martens, H. Pfister, K. Schnitzke, and G. Ziegler, IEEE Trans. Mag. MAG-11(2):420 (1975).

    Article  Google Scholar 

  2. P. Kneisel, O. Stoltz, and J. Halbritter, in Advances in Cryogenic Engineering, Vol. 22, Plenum Press, New York (1977), p. 341.

    Book  Google Scholar 

  3. B. Hillenbrand and H. Martens, J. Appl. Phys. 47:4151 (1976).

    Article  Google Scholar 

  4. B. Hillenbrand, H. Martens, H. Pfister, K. Schnitzke, and Y. Uzel, IEEE Trans. Mag. MAG-13(1):491 (1977).

    Article  Google Scholar 

  5. P. Kneisel, H. Kupfer, W. Schwarz, O. Stoltz, and J. Halbritter, IEEE Trans. Mag. MAG-13(1):496 (1977).

    Article  Google Scholar 

  6. G. Arnolds and D. Proch, IEEE Trans. Mag. MAG-13(1):500 (1977).

    Article  Google Scholar 

  7. H. Pfister, Cryogenics 16:17 (1976).

    Article  Google Scholar 

  8. J. P. Charlesworth, I. Macphail, and P. E. Madsen, J. Mater. Sci. 5:580 (1970).

    Article  Google Scholar 

  9. C. F. Old and I. Macphail, J. Mater. Sci. 4:202 (1969).

    Article  Google Scholar 

  10. R. M. Scanlan, W. A. Fietz, and E. F. Koch, J. Appl. Phys. 46:2244 (1975).

    Article  Google Scholar 

  11. B. J. Shaw, J. Appl. Phys. 47:2143 (1976).

    Article  Google Scholar 

  12. D. F. Moore and M. R. Beasley, Appl. Phys. Lett. 30:494 (1977).

    Article  Google Scholar 

  13. J. M. Poate, R. C. Dynes, L. R. Testardi, and R. H. Hammond, Phys. Rev. Lett. 37:1308 (1976).

    Article  Google Scholar 

  14. R. W. Rollins, H. Kupfer, and W. Gey, J. Appl. Phys. 45:5392 (1974).

    Article  Google Scholar 

  15. J. J. Hanak and R. E. Enstrom, in Proceedings of 10th Intern. Conference on Low Temperature Physics, Vol. III, Veniti, Moscow, USSR (1966), p. 10.

    Google Scholar 

  16. E. J. Kramer, J. Appl. Phys. 44:1360 (1973).

    Article  Google Scholar 

  17. J. R. Clem, in Low Temperature Physics-LT13, Vol. 3 (K. D. Timmerhaus, W. J. O’Sullivan, and E. F. Hammel, eds.), Plenum Press, New York (1974), p. 102.

    Google Scholar 

  18. J. F. Bussiere, Phys. Lett. A 58:343 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kneisel, P., Küpfer, H., Stoltz, O., Halbritter, J. (1978). Properties of Superconducting Nb3Sn Layers Used in RF Cavities. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9853-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9853-0_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9855-4

  • Online ISBN: 978-1-4613-9853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics