Hysteresis loss in a multifilament Superconductor

  • W. J. CarrJr.
  • M. S. Walker
  • D. W. Deis
  • J. H. Murphy
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 22)


Calorimetric measurements of the alternating field eddy current losses in three twisted filamentary, mixed-matrix superconductors were recently reported and compared with calculated losses based on the continuum model for a multifilament conductor. The measurements and comparison are extended here to the hysteresis loss. A typical cross section of the three conductors, which differ only in twist pitch, is shown in Fig. 1. The conductors, which were developed at the Los Alamos Scientific Laboratory, have a nominal composition of 3CuNi: 3Cu: INbTi and consist of 397 originally hexagonal copper-clad filaments of Nb-48wt. %Ti embedded in a Cu- 30% Ni matrix. The filaments are approximately hexagonal, being 9 μm across hexagonal fiats. The overall conductor radius is 0.026 cm and the filaments occupy a radius of about 0.024 cm. The twist pitch lengths for the three samples are 0.63,0.43, and 0.32 cm.


Critical Current Density Bias Field Hysteresis Loss Eddy Current Loss Filament Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



filament diameter


electric field parallel to filament axis




magnetic field vector


applied magnetic field


local magnetic field at a filament


amplitude of ac magnetic field Hp = magnetic field for full penetration of filament


critical current density


length of one complete twist


magnetization transverse to the filament axis


hysteresis loss per unit volume of conductor


radius of the part containing filaments


radius of conductor


volume fraction of superconductor


transverse permeability


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Walker, W. J. Carr Jr., and J. H. Murphy, IEEE Trans. Mag. Mag-11:1475 (1975).CrossRefGoogle Scholar
  2. 2.
    W. J. Carr Jr., J. Appl. Phys. 45:935(1974);CrossRefGoogle Scholar
  3. M. N. Wilson, C. R. Walters, J. D. Lewin, and P. F. Smith, J. Phys, D: Appl. Phys., 3:1517 (1970);CrossRefGoogle Scholar
  4. P. F. Dahl, G. H. Morgan, and W. B. Sampson, J. Appl. Phys. 40:2083 (1969).CrossRefGoogle Scholar
  5. 3.
    D. R. Salmon and J. A. Catterall, J. Phys. D: Appl. Phys. 3:1023 (1970).CrossRefGoogle Scholar
  6. 4.
    G. H. Morgan, J. Appl. Phys. 41:3673 (1970).CrossRefGoogle Scholar
  7. 5.
    W. J. Carr Jr., J. Appl. Phys. 45:929 (1974).CrossRefGoogle Scholar
  8. 6.
    W. J. Carr Jr., Phys. Rev. B 11:1547 (1975).CrossRefGoogle Scholar
  9. 7.
    H. London, Phys. Lett. 6:162 (1963).CrossRefGoogle Scholar
  10. 8.
    W. J. Carr Jr., M. S. Walker, and J. H. Murphy, J. Appl. Phys. 46:4048 (1975).CrossRefGoogle Scholar
  11. 9.
    J. H. Murphy, M. S. Walker, and W. J. Carr Jr., IEEE Trans. Mag. Mag.10:868 (1974).CrossRefGoogle Scholar
  12. 10.
    M. S. Walker, J. H. Murphy, and W. J. Carr Jr., IEEE Trans. Mag. Mag-11:309 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • W. J. CarrJr.
    • 1
  • M. S. Walker
    • 1
  • D. W. Deis
    • 1
  • J. H. Murphy
    • 1
  1. 1.Westinghouse Research LaboratoriesPittsburghUSA

Personalised recommendations