Skip to main content

Fatigue Crack Growth Rates of Structural Alloys at 4 K

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 22))

Abstract

Recent developments in applied superconductivity have demonstrated the feasibility of constructing electrical machinery to operate at liquid helium temperature. A device such as a rotating superconducting generator contains structural members that are continually subjected to fatigue during operation at 4 K. The fatigue resistance of candidate structural materials in this environment is a vital design consideration, and fatigue studies at extreme cryogenic temperatures are currently of great practical importance.

Work supported by the Advanced Research Projects Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. MacCrone, R. D. McCammon, and H. M. Rosenberg, Phil. Mag. 4:267 (1958).

    Article  Google Scholar 

  2. R. D. McCammon and H. M. Rosenberg, Proc. Roy. Soc. A 242:203 (1957).

    Article  Google Scholar 

  3. D. Hull, J. Inst. Met. 86:425 (1957).

    Google Scholar 

  4. L. P. Andreev and N. V. Novikov, Problems of Strength, No. 11:45 (1971).

    Google Scholar 

  5. I. A. Gindin, Ya. D. Starodubov, and M. P. Starolat, Ukrainian J. Phys. 18(11): 1899 (1973).

    Google Scholar 

  6. A. J. Nachtigall, S. J. Klima, and J. C. Freche, J. Mater. JMLSA 3:425 (1968).

    Google Scholar 

  7. A. J. Nachtigall, “Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium (4 K), in Liquid Nitrogen (78 K), and in Ambient Air (300 K),” NASA TN D-7532, NASA Lewis Research Center, Cleveland, Ohio (1974).

    Google Scholar 

  8. S. S. Manson, Exp. Mech. 5:193 (1965).

    Article  Google Scholar 

  9. E-399–74, Annual book of ASTM Standards, Part 10, ASTM, Philadelphia (1974), p. 432.

    Google Scholar 

  10. R. L. Tobler, R. P. Mikesell, R. L. Durcholz, and R. P. Reed, in: Properties of Materials for LNG Tankage, ASTM STP 579 (1975), p. 261.

    Google Scholar 

  11. C. W. Fowlkes and R. L. Tobler, Eng. Frac. Mech., to be published (1976).

    Google Scholar 

  12. G. Irwin, “Fracture,” Handbuch der Physik, Vol. 6, Springer-Verlag, Berlin (1958), p. 551.

    Google Scholar 

  13. E. Roberts, Jr., Mater. Res. Stand. 9:27 (1969).

    Google Scholar 

  14. C. J. Guntner and R. P. Reed, ASM Trans. Quart. 55:399 (1962).

    Google Scholar 

  15. D. C. Larbalestier and H. W. King, Cryogenics 13:160 (1973).

    Article  Google Scholar 

  16. R. P. Reed and C. J. Guntner, Trans. AIME 230:1713 (1964).

    Google Scholar 

  17. J. F. Watson and J. L. Christian, in: Low Temperature Properties of High-Strength Aircraft and Missile Materials, ASTM STP 287, (1960), p. 170.

    Google Scholar 

  18. J. F. Watson and J. L. Christian, Trans. AIME 224:998 (1962).

    Google Scholar 

  19. D. Bhandarkar, V. F. Zackay, and E. R. Parker, Met. Trans. 3:2619 (1972).

    Article  Google Scholar 

  20. A. G. Pineau and R. M. Pelloux, Met. Trans. 5:1103 (1974).

    Article  Google Scholar 

  21. P. C. Paris, Fatigue-An Interdisciplinary Approach, Syracuse Univ. Press, Syracuse, New York (1964), p. 107.

    Google Scholar 

  22. P. C. Paris and F. Erdogan, J. Basic Eng. Trans, ASMED 85:528 (1963).

    Article  Google Scholar 

  23. N. L. Person and G. C. Wolfer, in: Properties of Materials for LNG Tankage, ASTM STP 579 (1975), p. 80.

    Google Scholar 

  24. J. A. Feeney, J. C. McMillan, and R. P. Wei, Met. Trans. 1:1741 (1970).

    Article  Google Scholar 

  25. L. A. James and E. B. Schwenk, Jr., Met. Trans. 2:491 (1971).

    Article  Google Scholar 

  26. E. R. Naimon, W. F. Weston, and H. M. Ledbetter, Cryogenics 14:274 (1974).

    Article  Google Scholar 

  27. W. F. Weston, H. M. Ledbetter, and E. R. Naimon, Mater. Sci. Eng. 20:185 (1975).

    Article  Google Scholar 

  28. W. F. Weston, E. R. Naimon, and H. M. Ledbetter, in:Properties of Materials for LNG Tankage, ASTM STP 579 (1975), p. 397.

    Google Scholar 

  29. H. M. Ledbetter, W. F. Weston, and E. R. Naimon, J. Appl. Phys. 46:3855 (1975).

    Article  Google Scholar 

  30. A. L McEvily, in: Proceedings Conference of Fatigue and Fracture of Aircraft Structures and Materials, AFFDL-TR-70–144, Wright-Patterson Air Forces Base, Ohio, AD 719756 (1973).

    Google Scholar 

  31. G. T. Hahn, A. R. Rosenfield, and M. Sarrate, Tech. Rept. AFML-TR-67–143, Wright-Patterson Air Force Base, Ohio (1969).

    Google Scholar 

  32. R. C. Bates and W. G. Clark, Jr., Trans. ASM 62:380 (1969).

    Google Scholar 

  33. N. E. Frost, L. P. Pook, and K. Denton, Engr. Frac. Mech. 3:109 (1971).

    Article  Google Scholar 

  34. R. P. Reed, A. F. Clark, and E. C. Van Reuth (eds.), “Materials Research for Superconducting Machinery,” NBS/ARPA Semi-Annual Technical Report AD 780–596 and AD/A 004586 (1974).

    Google Scholar 

  35. S. Jin, J. W. Morris, Jr., and V. F. Zackay, in: Advances in Cryogenic Engineering, Vol. 19, Springer Science+Business Media New York (1972), p. 379.

    Google Scholar 

  36. J. M. Barsom, Trans. ASME .J. Eng. Ind. 93:1190 (1971).

    Article  Google Scholar 

  37. H. H. Johnson and P. C. Paris, Eng. Frac. Mech. 1:3 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tobler, R.L., Reed, R.P. (1977). Fatigue Crack Growth Rates of Structural Alloys at 4 K. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9850-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9850-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9852-3

  • Online ISBN: 978-1-4613-9850-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics