Cryocontamination of Optical Solar Reflectors and Mirrors

  • C.-K. Liu
  • C. L. Tien
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 19)


The degradation of satellite thermal control and optical surfaces due to deposition of various contaminants emanating from the spacecraft has become an increasing concern in the design for a satellite of long-term missions. The radiativetransfer through an absorbing and scattering film on a substrate cannot be readily determined by the more exact analysis based on the Maxwell equations. A study has been conducted for the radiative characteristics of solid cryodeposit by use of the energy method. This method is based on an approximate analysis which neglects the wave interference effect but considers the multiple internal reflection of the incident beam. Preliminary results based on this analysis in the prediction of transmittance. attenuation in an optical system due to cryocontamination agree well with measured attenuation data [1].


Thermal Emittance Quartz Crystal Microbalance Spectral Reflectance Energy Method Spectral Emittance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.-K. Liu and C. L. Tien, “Spectral Transmittance of Cryodeposits on a Transmitting Substrate,” AIAA Paper No. 73-149 presented at AIAA llth Aerospace Sciences Meeting, Washington, D.C., January 10-12, 1973.Google Scholar
  2. 2.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York (1965), p. 61.Google Scholar
  3. 3.
    C. L. Tien, C. K. Chan, and G. R. Cunnington, Trans. ASME, J. Heat Transfer, 94(1):41 (1972).CrossRefGoogle Scholar
  4. 4.
    P. R. Muller, Ph.D. Dissertation, University of Tennessee, Knoxville, Tennessee (1969).Google Scholar
  5. 5.
    P. S. Ray, Appl. Opt., 11(8): 1836 (1972).CrossRefGoogle Scholar
  6. 6.
    J. A. Roux, Ph.D. Dissertation, University of Tennessee, Knoxville, Tennessee (1970).Google Scholar
  7. 7.
    W. G. Egan and F. A. Spagnolo, Appl Opt., 8(11):2359 (1969).CrossRefGoogle Scholar
  8. 8.
    L. G. Schulz and F. R. Tangherlini, J. Opt. Soc. Am., 44(5): 362 (1954).CrossRefGoogle Scholar
  9. 9.
    A. I. Golovashkin, G. P. Motulevich, and A. A. Shubin, Soviet Phys.-JETP, 11(1): 38 (1960).Google Scholar
  10. 10.
    I. N. Shkliarevskii and R. G. Yarovaya, Opt. Spectry., 16(1):45 (1964).Google Scholar
  11. 11.
    G. P. Motulevich, A. A. Shubin, and O. F. Shustova, Soviet Phys.-JETP, 22(5): 984 (1966).Google Scholar
  12. 12.
    L. G. Shulz, J. Opt. Soc. Am., 44(5): 357 (1954).CrossRefGoogle Scholar
  13. 13.
    B. B. Dold and R. Mecke, Part 1, OPTIK, 22(6):435 (1965).Google Scholar
  14. 14.
    A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am., 56(6):752 (1966).CrossRefGoogle Scholar
  15. 15.
    A. F. Grenis, TR 67–02, Army Materials Research Agency, Watertown, Massachusetts (January 1967).Google Scholar
  16. 16.
    C.-K. Liu, M. C. Fong, and A. P. M. Glassford, “Satellite Vehicle Contamination Control,” LMSC D350702, Lockheed Missiles & Space Co. (May 31, 1973).Google Scholar
  17. 17.
    A. E. Huląuist, “Thermal Control Surface Development-1971 Independent Development Program,” LMSC D153559, Lockheed Missiles & Space Company, (May 31, 1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C.-K. Liu
    • 1
  • C. L. Tien
    • 2
  1. 1.Lockheed Palo Alto Research LaboratoryPalo AltoUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations