Skip to main content

Superfluid Thermodynamic Transport Limits for Liquid Helium II

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 19))

  • 509 Accesses

Abstract

Recent advances in liquid He II technology pose questions concerning the utilization of “superphenomena.” In particular, it is useful to know the transport conditions that separate classical flow (with large flow resistances) from nonclassical phenomena (with small or entirely negligible resistances). The purpose of the present investigation, therefore, is a thermodynamic evaluation of the critical flow rates at the initiation of observable flow resistance (upper stability limit at which superfluidity becomes thermodynamically unstable). The critical flow rate is evaluated on the basis of the modified (Gorter-Casimir) two-fluid model [1] and the extended theory of second-order phase transitions [2,3] The comparison with experiment shows that in general the thermodynamic critical rate is an upper bound to experimental data which approach the limit closely when TT λ. Good agreement also is obtained for specific geometries in a limited temperature range below the λ-point

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C :

= specific heat (volumetric)

ƒ :

= free energy density (Δƒ difference between disordered and ordered 4He)

h :

= Planck’s constant divided by 2π

j eff :

= effective mass flux

m :

= mass of 4He atom

n :

= exponent

ΔP T :

= thermomechanical pressure difference

q :

= heat flux

S :

= entropy (volumetric)

T :

= temperature

T λ :

= temperature at λ-point

t :

= T/T λ

U c :

= condensation energy (U o = Δƒ o)

v :

= velocity

y :

= superfluid density ratio, ρ s /ρ

α:

= parameter in equation (8)

β:

= parameter in equation (8)

γ:

= volumetric entropy coefficient

ε:

= exponent in equation (1)

ξ:

= coherence length

ρ:

= density

ψ:

= wave function, ψ at T = 0

0|2 :

= equilibrium order parameter

c :

= critical

con:

= condensate

n :

= normal component

R :

= reference quantity

s :

= superfluid component

0:

= T → 0

References

  1. C. J. Gorter, in: Progress in Low Temperature Physics, Vol 1, North-Holland Press, Amsterdam, Netherlands (1955), p. 1.

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, London (1958), p. 430.

    Google Scholar 

  3. V. L. Ginzburg and L. P. Pitaevskii, Soviet Phys.—JETP, 7:858 (1958)

    Google Scholar 

  4. Yu. G. Mamaladze, Soviet Phys.—JETP, 25:479 (1967).

    Google Scholar 

  5. G. Borelius, Cryogenics, 3:96 (1963).

    Article  Google Scholar 

  6. C. Linnet, Ph.D. Dissertation, University of California, Los Angeles, California (1971); UCLA Engr. Rept. 7109(1971).

    Google Scholar 

  7. H. J. Mikeska, Phys. Rev., 179:166 (1969).

    Article  Google Scholar 

  8. W. F. Vinen, Statistical Physics, Phase Transitions, and Superfluidity, Vol 2, (M. Chretien, E. P. Gross, and S. Deser eds.), Gordon and Breach, New York (1966), p. 150.

    Google Scholar 

  9. R. D. Puff and J. S. Tenn, Phys. Rev., Al: 125 (1970).

    Google Scholar 

  10. H. A. Mook, R. Scherm, and M. K. Wilkinson, Phys. Rev., A6:2268 (1972).

    Google Scholar 

  11. J. F. Fernandez and H. A. Gersch, Phys. Rev., A7:239 (1973).

    Google Scholar 

  12. R. P. Henkel, E. N. Smith, and J. D. Reppy, Phys. Rev. Letters, 23:1276 (1969).

    Article  Google Scholar 

  13. E. S. Sabisky and C. H. Anderson, Phys. Rev. Letters, 30:1122 (1973).

    Article  Google Scholar 

  14. I. Rudnick and J. C. Fräser, J. Low Temp. Phys., 3:225 (1970).

    Article  Google Scholar 

  15. M. Chester, L. C. Yang, and J. B. Stephens, Phys. Rev. Letters, 29:211 (1972); L. C. Yang, Ph.D. Dissertation, University of California, Los Angeles, California (1973).

    Article  Google Scholar 

  16. M. Steingart and W. L Glaberson, 7. Low Temp. (1972)

    Google Scholar 

  17. G. W. Rayfield and F. Reif, Phys. Rev., 136A: 1194 (1964).

    Article  Google Scholar 

  18. C. Linnet, T. H. K. Frederking, and R. C. Amar, in: Proceedings of 13th Intern. Conference on Low Temperature Physics, Vol. 1, Plenum Press, New York (1974), p. 393

    Book  Google Scholar 

  19. R. L. Haben, R. A. Madsen, A. C. Leonard, and T. H. K. Frederking, in: Advances in Cryogenic Engineering, Vol. 17, Plenum Press, New York (1972), p. 323.

    Google Scholar 

  20. R. L. Haben, M.S. Thesis, University of California, Los Angeles, California (1967).

    Google Scholar 

  21. D. W. B. Matthews and A. C. Leonard, in: Advances in Cryogenic Engineerings Vol. 19, Plenum Press, New York (1974), p. 417.

    Google Scholar 

  22. W. E. Keller and E. F. Hammel, Physics, 2:221 (1966).

    Google Scholar 

  23. J. R. Clow and J. D. Reppy, Phys. Rev. Letters, 19:291 (1967)

    Article  Google Scholar 

  24. J. S. Langer and J. D. Reppy, in: Progress in Low Temperature Physics, Vol. 16 (C. J. Gorter ed.) North-Holland Press, Amsterdam, Netherlands (1970), p. 1.

    Google Scholar 

  25. G. B. Hess, Phys. Rev. Letters, 27:977 (1971).

    Article  Google Scholar 

  26. A. Eisner, in: Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York (1973), p. 141

    Book  Google Scholar 

  27. T. H. K. Frederking, A. Eisner, and G. Klipping, in: Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York (1973), p. 132.

    Book  Google Scholar 

  28. S. M. Bhagat and B. M. Winer, Phys. Letters, 27A:537 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linnet, C., Amar, R.C., Wang, Y.G., Frederking, T.H.K. (1995). Superfluid Thermodynamic Transport Limits for Liquid Helium II. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9847-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9847-9_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9849-3

  • Online ISBN: 978-1-4613-9847-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics