Alternating Current Losses in Superconducting Conductors for Low-Field Applications

  • M. A. Janocko
  • D. W. Deis
  • W. J. CarrJr.
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 19)


The loss characteristics of type II superconducting conductors carrying an ac current in the absence of an applied field, either ac or dc, is one of the principal factors which will determine the feasibility of ac power transmission lines constructed with these materials. These self-field conductor losses depend not only upon the intrinsic superconductor characteristics, such as the shape of the critical current density-critical field curve[1], but also upon the conductor geometry, and the amount, type, and distribution of the nonsuperconducting matrix material. In order to obtain a better understanding of these losses and their mechanisms, an experimental investigation of ac losses has been undertaken in a number of types of commercial state-of-the-art superconducting conductors. Conductors investigated include Nb3Sn tapes, Nb-Ti multifilament and single-core conductors in round and rectangular configurations, and a Nb multifilament conductor.


Current Loss Hysteresis Loss Axial Magnetic Field Eddy Current Loss Critical State Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hancox, Proc. IEE, 113:1221 (1966).Google Scholar
  2. 2.
    E. B. Forsyth, “Underground Power Transmission by Superconducting Cable,” Brookhaven National Laboratory Rept. No. 50325, Brookhaven, New York (March 1972).Google Scholar
  3. 3.
    M. A. Janocko and D. W. Deis, Cryogenics, to be published.Google Scholar
  4. 4.
    H. London, Phys. Letters, 6:162 (1963).CrossRefGoogle Scholar
  5. 5.
    H. R. Hart, Jr. and P. S. Swartz, “The Calculation of AC Losses Using the Critical State Model,” Air Force Materials Laboratory Tech. Rept. No. AFML-TR-65-B1, Section IIA (March 1966).Google Scholar
  6. 6.
    T. A. Buchhold, Cryogenics, 3:141 (1963).CrossRefGoogle Scholar
  7. 7.
    M. J. Chant, M. R. Halse, and H. O. Lorch, Proc. IEE, 117:1441 (1970).Google Scholar
  8. 8.
    M. Garber and W. B. Sampson, in: Proc. 13th Intern. Congress of Refrigeration, Intern. Inst. Refrig., Paris (1973), p. 393.Google Scholar
  9. 9.
    D. R. Salmon and J. A. Catterall, J. Appl. Phys., D3:1023 (1970).Google Scholar
  10. 10.
    A. R. Eastham and R.G. Rhodes, in: Proc. 3rd Intern. Cryogenic Engineering Conference, Iliffe Sei. and Tech. Publ., London (1970), p. 167.Google Scholar
  11. 11.
    M. Kudo, K. Aihara, K. Kuroda, and T. Doi, in: Proc. 4th Intern. Cryogenic Engineering Conference, Iliffe Sei. and Tech. Publ., London (1972), p. 143.Google Scholar
  12. 12.
    W. T. Beall, Jr. and R. W. Meyerhoff, J. Appl. Phys., 40:2052 (1969).CrossRefGoogle Scholar
  13. 13.
    M. P. Mathur, private communication.Google Scholar
  14. 14.
    W. I. Dunn and P. Hlawiczka, Brit. J. Appl. Phys. (Ser. 2), D1: 1469 (1968).Google Scholar
  15. 15.
    W. J. Carr, to be published in J. Appl. Phys.Google Scholar
  16. 16.
    M. S. Walker, in: Proceedings Applied Superconductivity Conference, IEEE Publ. No. 72CHO682–5- TABSC, p. 477.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. A. Janocko
    • 1
  • D. W. Deis
    • 1
  • W. J. CarrJr.
    • 1
  1. 1.Westinghouse Research LaboratoriesPittsburghUSA

Personalised recommendations