Cryogenic H2 and National Energy Needs

Part of the Advances in Cryogenic Engineering book series (ACRE, volume 19)


Hydrogen, as a nonfossil synthetic fuel, is a prime candidate to satisfy many of our long-term fuel requirements. Specifically, cryogenic hydrogen offers significant advantages for many applications. The objective of this presentation is to synthesize the voluminous and sometimes speculative literature, emphasize cryogenic hydrogen applications, and appraise the prospects for cryogenic hydrogen in the rapidly expanding fuel market.


Liquid Hydrogen Fission Reactor Solid Hydrogen Synthetic Fuel Fossil Fuel Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Dreyfus, “Federal Energy Organization,” Staff Analysis pursuant to Senate Resolution 45, Serial No. 93–6 (92–41), Washington, D.C. (1973).Google Scholar
  2. 2.
    M. K. Hubbert, Sci. Am., 224(3): 68 (1971).Google Scholar
  3. 3.
    D. W. Brown, M. C. Smith, and R. M. Potter, “A New Method for Extracting Energy from ‘Dry’ Geothermal Reservoirs,” Los Alamos preprint, LA-DC-72–1157, Los Alamos, New Mexico (1972).Google Scholar
  4. 4.
    A. L. Austin, G. H. Higgins, and J. H. Howard, “The Total Flow Concept for Recovery of Energy from Geothermal Hot Brine Deposits,” Rept. UCRL-51366, Livermore, California (1973).CrossRefGoogle Scholar
  5. 5.
    “Summary of Seminar on Geothermal Energy,” held at United Nations Headquarters, January 8–10, 1973, New York.Google Scholar
  6. 6.
    W. H. Comtois, “Economics of Electric Power Generation Utilizing Geothermal Energy,” presented at the Am. Power Conference, Chicago, Illinois (1973).Google Scholar
  7. 7.
    A. M. Weinberg, Mech. Engr. 95(6): 14 (1973).Google Scholar
  8. 8.
    R. F. Post, Physics Today 26:31 (1973).CrossRefGoogle Scholar
  9. 9.
    L. P. Gaucher, Mech. Engr., 94(5):9(1972).Google Scholar
  10. 10.
    F. Daniels, Mech. Engr., 9: 16 (1972).Google Scholar
  11. 11.
    H. R. Hay, Mech. Engr. 94(10) 24 (1972).Google Scholar
  12. 12.
    A. B. Meinel and M. P. Meinel, Physics Today 25:44 (1972).CrossRefGoogle Scholar
  13. 13.
    C. Zener, Physics Today 26:48 (1973).CrossRefGoogle Scholar
  14. 14.
    J. D. Isaacs and R. J. Seymour, Intern. J. Environ. Studies 4:201 (1973).CrossRefGoogle Scholar
  15. 15.
    W. E. Heronemus, “Ocean Sited Power Plants,” Rept. NSF/RANN/SE/GI-34979/PR/73/1, University of Massachusetts, Amherst, Massachusetts (1973).Google Scholar
  16. 16.
    W. V. Hassenzahl, J. D. Rogers, and T. E. McDonald, “Magnetic Energy Storage and Its Application in Electric Power Systems,” presented at IEEE 1973 Intern. Conference, New York, March 1973.Google Scholar
  17. 17.
    G. D. Friedlander, IEEE Spectrum 10(2):44 (1973).CrossRefGoogle Scholar
  18. 18.
    J. W. Michel, “Hydrogen and Other Synthetic Fuels,” USAEC, TID-26136, September 1972.Google Scholar
  19. 19.
    D. P. Gregory, D. Y. C. Ng, and G. M. Long, in: Electrochemistry of Cleaner Environments (J. O’M. Bokris, ed.), Plenum Press, New York (1972), p. 226.CrossRefGoogle Scholar
  20. 20.
    T. D. Weikel, “Ground Support Equipment: Low Pollutant Fuels,” Rept. NAEC-GSED-59 (1972).Google Scholar
  21. 21.
    G. V. Day, Futures 4(1972).Google Scholar
  22. 22.
    A. L. Austin, “A Survey of Hydrogen’s Potential as a Vehicular Fuel,” Rept. UCRL-51228, Livermore, California (1972).Google Scholar
  23. 23.
    F. Bacon and T. Fry, New Scientist 55(808): 285 (1972).Google Scholar
  24. 24.
    K. Kiang, H. F. Feldmann, and P. M. Yavorsky, “Hydrogasification of Cattle Manure to Pipeline Gas,” presented at the 165th Nat. Meeting, Am. Chem. Soc., Dallas, Texas, April 1973.Google Scholar
  25. 25.
    L. L. Anderson, “Energy Potential From Organic Wastes: A Review of the Quantities and Sources,” Bur. Mines Infor. Circ. IC-8549 (1972).Google Scholar
  26. 26.
    M. J. Royal and N. M. Nimmo, Oiland Gas J 71(6):52 (1973).Google Scholar
  27. 27.
    “Clean Energy From Coal—A National Priority,” 1973 Annual Report, Office of Coal Res., U.S. Dept. of Interior, Washington, D.C. (1973).Google Scholar
  28. 28.
    W. E. Winsche, K. C. Hoffman, and F. J. Salzano, in: Proceedings of 1th lECEC,* ACS, Washington, D.C. (1972), p. 1366.Google Scholar
  29. 29.
    R. H. Wiswall, Jr. and J. J. Reilly, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1342.Google Scholar
  30. 30.
    K. H. Weil, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1355.Google Scholar
  31. 31.
    R. J. Schoeppel, Chemtech, l Aie (1972).Google Scholar
  32. 32.
    W. J. D. Escher, in: Proceedings of 1th lECEC ACS, Washington, D.C. (1972), p. 1392.Google Scholar
  33. 33.
    L. W. Jones, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1364.Google Scholar
  34. 34.
    R. D. Witcofski, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1349.Google Scholar
  35. 35.
    A. A. duPont, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1966), p. 1.Google Scholar
  36. 36.
    Washington Science Trends, 30(8):45 (1973).Google Scholar
  37. 37.
    J. R. Bartlit, F. J. Edeskuty, and K. D. Wüüamson, Jr., in:Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1312.Google Scholar
  38. 38.
    E. C. Tanner and R. A. Huse, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1323.Google Scholar
  39. 39.
    D. P. Gregory, Sci. Am., 228(1): 13 (1973).CrossRefGoogle Scholar
  40. 40.
    J. H. Chiles III, Sci. Am., 228(4):8 (1973).CrossRefGoogle Scholar
  41. 41.
    “The 1970 National Power Survey,” Parts I and IV, Federal Power Commission, Washington, D.C. (1971).Google Scholar
  42. 42.
    A. M. Weinberg, Science 177:27 (July 1972).CrossRefGoogle Scholar
  43. 43.
    G. De Beni and C. Marchetti, Euro-spectra 9(2):46 (1970).Google Scholar
  44. 44.
    R. N. Quade, Power Engr., 77(4): 50 (1973).Google Scholar
  45. 45.
    J. E. Funk and R. M. Reinstrom,I & EC Process Design and Development 5(3): 366 (1966).Google Scholar
  46. 46.
    N. C. Hallett, “Study, Cost, and System Analysis of Liquid Hydrogen Production,” NASA Rept. CR- 73226 (1968).Google Scholar
  47. 47.
    T. R. Strobridge, “Cryogenic Refrigerators—An Updated Survey,” NBS Tech. Note, to be published.Google Scholar
  48. 48.
    J. R. Bartlit and F. J. Edeskuty, in: Proceedings of 4th Intern. Cryogenic Engineering Conference, IPC Sci. and Tech. Press, Guildford, England (1972), p. 177.Google Scholar
  49. 49.
    F. A. Martin, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972), p. 1335.Google Scholar
  50. 50.
    “The Potential For Energy Conservation,” A Staff Study, Office of Emergency Preparedness, Washington, D.C. (October 1972).Google Scholar
  51. 51.
    C. W. Savery, Traffic Quarterly 1972 (October), 485.Google Scholar
  52. 52.
    W. P. Goss and J. G. McGowan, Transportation 1(3): 265 (1972).CrossRefGoogle Scholar
  53. 53.
    E. Hirst, “Energy Consumption for Transportation in the U. S.,” Rept. ORNL-NSF-EP-15, Oak Ridge, Tennessee (March 1972).Google Scholar
  54. 54.
    Y. Breelle, J. Cheron, and A. Grehier, in: Proceedings of 1th lECEC, ACS, Washington, D.C. (1972) p. 1.Google Scholar
  55. 55.
    K. V. Kordesch, J. Electrochem. Soc. 118(5):812 (1971).CrossRefGoogle Scholar
  56. 56.
    R. C. Mulready, in: Technology and Uses of Liquid Hydrogen (R. B. Scott, W. H. Denton, and C. M Nicholls, eds.), Macmillan, New York (1964), p. 149.Google Scholar
  57. 57.
    “Hydrogen for Turbojet and Ramjet Powered Flight,” Staff Rept. NACA RM E57D23 (April 1957)Google Scholar
  58. 58.
    R. D. Witcofski, Langley Research Center, NASA, private communication.Google Scholar
  59. 59.
    A. Goldburg, Astro, and Aero 10(12): 56 (1972).Google Scholar
  60. 60.
    C. Sindt, Cryogenics 10:372 (1970).CrossRefGoogle Scholar
  61. 61.
    W. M. Deaton and P. V. Mullins, in: Technology of Liquid Helium (R. H. Kropschot, B. W. Birming ham, and D. B. Mann, eds.), U. S. Govt. Printing Office, Washington, D.C. (1968), p. 4.Google Scholar
  62. 62.
    J. Hord, “Explosion Criteria for Liquid Hydrogen Test Facilities,” unpublished NBS Report (February 1972).Google Scholar
  63. 63.
    M. H. Sonstegaard, Mech. Engr., 95 (6): 19 (1973).Google Scholar
  64. 64.
    J. Hord, “Solid Hydrogen as a Space Storable Propellant—A Preliminary Study,” unpublished NBS Rept. (March 1972).Google Scholar
  65. 65.
    P. Meadows and J. A. DeCarlo, in: Mineral Facts and Problems U. S. Bureau of Mines Bulletin 650, Washington, D.C. (1970), p. 97.Google Scholar
  66. 66.
    J. Hord, “Correlations for Predicting Leakage through Closed Valves,” NBS Tech. Note 355 (1967).Google Scholar
  67. 67.
    P. G. Peterson, “Energy Research—The Key to Our Long Range Energy Future,” presented to the 55th Anniversary Convention of the Nat. Coal Assoc., Washington, D.C., June 1972.Google Scholar
  68. 68.
    N. de Nevers, Sci. Am. 228(6): 14 (1973).CrossRefGoogle Scholar
  69. 69.
    S. A. Bresler and J. D. Ireland, Chem. Engr. 79(23): 94 (1972).Google Scholar
  70. 70.
    W. D. Trammell, Chem. Engr. 80(10):68 (1973).Google Scholar
  71. 71.
    R. D. McCarty and L. A. Weber, “Thermophysical Properties of Parahydrogen from the Freezing Liquid Line to 5000 R for Pressures to 10,000 Psia,” NBS Tech. Note 617 (April 1972).Google Scholar

Pertinent References Not Cited in Text

  1. 72.
    J. G. McLean and W. B. Davis, “Guide to National Petroleum Council Report on United States Energy Outlook,” Nat. Petroleum Council, 1625 K. St. N. W., Washington, D.C. (December 1972).Google Scholar
  2. 73.
    A. L. Austin, B. Rubin, and G. C. Werth, “Energy: Uses, Sources, Issues,” Rept. UCRL-51221, Livermore, California (1972).CrossRefGoogle Scholar
  3. 74.
    M. McCormack, “Energy Research and Development,” Rept. of the Task Force on Energy, 92nd Congress, Serial EE, Washington, D.C. (December 1972).Google Scholar
  4. 75.
    “National Gas Supply and Demand 1971–1990,” FPC S-218, Staff Rept. No. 2, Bur. of Nat. Gas, Federal Power Commission, Washington, D.C. (February 1972).Google Scholar
  5. 76.
    V. D. Arp, A. F. Clark, and T. M. Flynn, “Some Applications of Cryogenics to High Speed Ground Transportation,” NBS Tech. Note 635 (February 1973).Google Scholar
  6. 77.
    W. Berry, R. Calleson, J. Epsil, C. Quartero, and E. Swanson, “A Fuel Conservation Study for Transport Aircraft Utilizing Advanced Technology and Hydrogen Fuel,” NASA CR-112204 (November 1972).Google Scholar
  7. 78.
    B. M. Abrahim and F. Schreiner, Science, 180(4089): 959 (1973).CrossRefGoogle Scholar
  8. 79.
    “An Assessment of Solar Energy as a National Energy Resource,” prepared by the NSF/NASA Solar Energy Panel, Dept. of Mech. Engineering, University of Maryland, College Park, Maryland (December 1972).Google Scholar
  9. 80.
    S. Weiss, “The Use of Hydrogen for Aircraft Propulsion in View of the Fuel Crisis,” NASA TMX- 68242 (March 1973).Google Scholar
  10. 81.
    R. S. Lewis and B. I Spinrad (eds.). The Energy Crisis, Science and Public Affairs, Bulletin of the Atomic Scientists, Chicago, Illinois (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. Hord
    • 1
  1. 1.Cryogenics DivisionNBS Institute for Basic StandardsBoulderUSA

Personalised recommendations