Normal and Abnormal Development of the Brain



The gestational period is exceptionally hazardous, having a particularly high mortality rate during the first trimester. Morbidity is also high, with an incidence of developmental abnormalities approaching five percent of all live births (Niswander & Gordon, 1972). The central nervous system is especially vulnerable (Leck, Record, McKeown, & Edwards, 1968; Creasy & Alberman, 1976). The severity of the public health problem posed by developmental disorders of the nervous system is underscored by the fact that in the United States alone over three percent or approximately six million individuals are affected (Moser & Wolf, 1971).


Pyramidal Neuron Cresyl Violet Abnormal Development Cortical Plate Young Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R., Prod’hom, L., & Rabinowica, T. Intrauterine brain death: Neuro-axial reticular core necrosis. Acta Neuro-pathologica, 1977, 40, 41–49.Google Scholar
  2. Bankl, H. & Jellinger, K. Zentralnervose Schaden nach fetaler Kohlenoxyvergiftung. Beitrag Pathologisches Anatomie, 1967, 135, 350–376.Google Scholar
  3. Bird, E. A brain tissue resource center to promote research in schizophrenia. In C. Baxter & T. Melnechuck (Eds.), Perspectives in schizophrenia research. New York: Raven Press, 1980.Google Scholar
  4. Brazier, M. & Petsche, H. Architectonics of the Cerebral Cortex. New York: Raven Press, 1978.Google Scholar
  5. Buell, S. & Coleman, P. Quantitative evidence for selective dendritic growth in normal aging but not in senile dementia. Brain Research, 1981, 214, 23–41.PubMedCrossRefGoogle Scholar
  6. Cajal, S.R.-y- Histologie du systeme nerveaux de l’homme et des vertebres, Vol. I and II, C.I.S.C., Madrid (reprinted 1972), 1911.Google Scholar
  7. Cavanagh, J. (Ed.) The brain in unclassified mental retardation. Baltimore: Williams and Wilkins Co., 1972.Google Scholar
  8. Caviness, V. & Frost, D. Tangential organization of thalamic projections to the neocortex in the mouse. Journal of Comparative Neurology, 1981, 194, 335–367.CrossRefGoogle Scholar
  9. Caviness, V. Neocortical histogenesis in normal and reeler mice: A developmental study based upon (3H)thymidine autoradiography. Developmental Brain Research, 4, 1982, 293–301.CrossRefGoogle Scholar
  10. Caviness, V., Evrard, P., & Lyon, G. Radial neuronal assemblies, ectopia and necrosis of the developing cortex: A case analysis. Acta Neuropathologica, 1978, 41, 67–72.PubMedCrossRefGoogle Scholar
  11. Caviness, V. & Rakic, P. Mechanisms of cortical development: A view from mutations in mice. Annual Review of Neuroscience, 1978, 1, 297–326.(b)PubMedCrossRefGoogle Scholar
  12. Caviness, V. & Williams, R. Cellular pathology of developing human cerebral cortex. In R. Katzman (Ed.), Congenital and acquired cognitive disorders. New York: Raven Press, 1979.Google Scholar
  13. Chi, J., Dooling, E., & Gilles, F. Gyrial development of the human brain. Annuals of Neurology, 1977, 1, 86–93.CrossRefGoogle Scholar
  14. Christensen, E. & Melchior, J. Cerebral palsy: A clinical and neuropathological study. Laurenham, United Kingdom: Spas-tics Society Publishers, 1967.Google Scholar
  15. Colonnier, M. The electron-microscopic analysis of the neuronal organization of the cerebral cortex. In F. Schmitt (Ed.), The organization of the cerebral cortex. Cambridge, MA: MIT Press, 1981.Google Scholar
  16. Cragg, B. The density of synapses and neurons in normal, mentally defective and aging human brains. Brain, 1975, 98, 81–90.PubMedCrossRefGoogle Scholar
  17. Creasy, M. & Alberman, E. Congenital malformations of the central nervous system in spontaneous abortuses. Journal of Medical Genetics, 1976, 13, 9–16.PubMedCrossRefGoogle Scholar
  18. Dekaban, A. Abnormalities in children exposed to x-radiation during various stages of gestation: Tentative timetable of radiation injury to the human fetus. Journal of Nuclear Medicine, 1968, 9, 471.PubMedGoogle Scholar
  19. Desmond, M. & Jacobson, A. Embryonic brain enlargement requires cerebrospinal fluid pressure. Developmental Biology, 1977, 57, 188–198.PubMedCrossRefGoogle Scholar
  20. Dieker, H., Edwards, R., & Zurhein, G. The lissencephaly syndrome. Birth Defects, 1969, 5, 53–64.Google Scholar
  21. Dobbing, J. & Sands, T. Quantitative growth and development of the human brain. Archives of Diseases of Children, 1973, 48, 757–767.CrossRefGoogle Scholar
  22. Dooling, E. & Richardson, E. A case of adult microcephaly. Archives of Neurology, 1980, 37, 688–692.PubMedCrossRefGoogle Scholar
  23. Eecken, H.M. van der. The anastemoses between the leptomeningeal arteries of the brain. Springfield, IL: CC Thomas, 1959.Google Scholar
  24. Ehlinger, G., Blakemore, C., Milner, A.D., & Wilson, J. Agenesis of the corpus callosum: A further behavioral investigation. Brain, 1974, 97, 225–234.CrossRefGoogle Scholar
  25. Evrard, P., Caviness, V., & Lyon, G. The mechanism of arrest of neuronal migration in the Zellweger malformation: An hypothesis based upon cytoarchitectonic analysis. Acta Neuropathologica, 1978, 41, 109–117.PubMedCrossRefGoogle Scholar
  26. Freytag, E. & Lindenberg, R. Neuropathologic findings in patients of a hospital for the mentally deficient: A survey of 359 cases. Johns Hopkins Medical Journal, 1967, 121, 379–391.PubMedGoogle Scholar
  27. Friede, R. Developmental neuropathology. New York: Springer, 1975.Google Scholar
  28. Gilbert, J., Brown, B., Strocchi, P., Bird, E.D., & Marotta, C.A. The preparation of biologically active messenger RNA from human postmortem brain tissue. Journal of Neurochemistry, 1981, 36, 976–984.PubMedCrossRefGoogle Scholar
  29. Halperin, J., Williams, R., & Kolodny, E. Microcephaly vera, progressive motor neuron disease and nigral degeneration. Neurology in press.Google Scholar
  30. Halsey, J., Allen, N., & Chamberlan, H. The morphogenesis of hydranencephaly. Journal of Neurological Science, 1971, 12, 187–217.CrossRefGoogle Scholar
  31. Huttenlocher, P. Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology, 1974, 24, 203–210.PubMedGoogle Scholar
  32. Innocenti, G., Fiore, L., & Caminiti, R. Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neuro-science Letters, 1977, 4, 237–242.CrossRefGoogle Scholar
  33. Jacobson, M. Developmental neurobiology. New York: Plenum Press, 1978.Google Scholar
  34. Jones, E. Anatomy of cerebral cortex: Columnar input-output organization. In The organization of the cerebral cortex. Cambridge, MA: MIT Press, 1981.Google Scholar
  35. Jones, E. Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. Journal of Comparative Neurology, 1975, 160, 205–268.PubMedCrossRefGoogle Scholar
  36. Jones, K., Smith, D., Ulleland, C., & Streissgath, A.P. Pattern of malformation in the offspring of alcoholic mothers. Lancet, 1973, 1, 1267–1271.PubMedCrossRefGoogle Scholar
  37. Kloepfer, H., Platon, R., & Hansche, W.J. Manifestations of a recessive gene for microcephaly in a population isolate. Journal Genetik Humaine, 1964, 13, 52–59.Google Scholar
  38. Kolliker, A. Hanbuch der genebelehre des menchen. Leipzig: Englemann Press, 1896.Google Scholar
  39. Leck, I., Record, R., McKeown, T., & Edwards, J. The incidence of malformations in Birmingham, England, 1950–1959. Terutalogy, 1968, 1, 263–280.CrossRefGoogle Scholar
  40. Lemire, R., Beckwith, J., & Warkany, J. Anecephaly. New York: Raven Press, 1978.Google Scholar
  41. Lemire, R., Loeser, J., Leech, R., & Alvord, E. Normal and abnormal development of the human nervous system. New York: Harper Row, 1975.Google Scholar
  42. Levine, D., Fisher, M., & Caviness, V. Porencephaly with microgyria: A pathologic study. Acta Neuropathologica, 1974, 29, 99–113.PubMedCrossRefGoogle Scholar
  43. Loeser, J. & Alvord, E. Agenesis of the corpus callosum. Brain. 1968, 91, 553–570.PubMedCrossRefGoogle Scholar
  44. Lorente de No, R. Cerebral cortex: Architecture, intracortical connections, major projections. In J. Fulton (Ed.), Physiology of the nervous system. New York: Oxford University Press, 1949.Google Scholar
  45. Marin-Padilla, M. Prenatal and early postnatal ontogenesis of the human motor cortex: A golgi study. I. The sequential development of the cortical layers. Brain Research, 1970, 23, 167–183.PubMedCrossRefGoogle Scholar
  46. Marin-Padilla, M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anatomy Embryology, 1978, 152, 109–126.CrossRefGoogle Scholar
  47. Matthysse, S. & Williams, R. Quantitative neurohistology with the computer microscope. In C. Baxter & R. Melnechuk (Eds.), Perspectives in schizophrenia research. New York: Raven Press, 1980.Google Scholar
  48. Molliver, M., Kostovic, I., & Van der Loos, H. The development of synapses in the cerebral cortex of the human fetus. Brain Research, 1973, 50, 403–407.PubMedCrossRefGoogle Scholar
  49. Moser, H. & Wolf, P. The nosology of mental retardation: Including the report of a survey of 1,378 mentally retarded individuals at the Walter E. Fernald State School. Birth Defects, 1971, 1, 117–134.Google Scholar
  50. Mountcastle, V. The organizing principle for cerebral function: The unit module and the distributed system. In F. Schmitt (Ed.), The neurosciences, fourth study program. Cambridge, MA: MIT Press, 1979.Google Scholar
  51. Myers, R. Brain pathology following fetal vascular occlusion: An experimental study. Investigative Ophthalmology, 1969, 8, 41–50.PubMedGoogle Scholar
  52. Myers, R. & Myers, S. Use of sedative, analgesic and anesthetic drugs during labor and delivery: Bane or boon? American Journal of Obstetrics and Gynecology, 1979, 133, 83–104.PubMedGoogle Scholar
  53. Myers, R., Valerio, M., Martin, D., & Nelson, K. Perinatal brain damage: Porencephaly in the cynomologous monkey. Biological Neonate, 1973, 22, 253–273.CrossRefGoogle Scholar
  54. Myers, R. Maternal psychological stress and fetal asphyxia: A study in the monkey. American Journal of Obstetrics and Gynecology, 1975, 122, 47–59.PubMedGoogle Scholar
  55. Nauta, W. & Karten, H. A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In F. Schmitt (Ed.), The neurosciences: Second study program. New York: Rochefeiler University Press, 1970.Google Scholar
  56. Niswander, K. & Gordon, M. Women and their pregnancies. Philadelphia: W.B. Saunders, 1972.Google Scholar
  57. Paldino, A. & Purpura, D. Quantitative analysis of the spatial distribution of axonal and dendritic terminals of hippocampal pyramidal neurons in immature human brain. Experimental Neurology, 1979, 64, 604–619.PubMedCrossRefGoogle Scholar
  58. Pinto-Lord, M. & Caviness, V. Determinants of cell shape and orientation: A comparative golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice. Journal of Comparative Neurology, 1979, 187, 49–70.PubMedCrossRefGoogle Scholar
  59. Purpura, D. Dendritic spine dysgenesis and mental retardation. Science, 1974, 186, 1126–1128.PubMedCrossRefGoogle Scholar
  60. Purpura, D. Pathobiology of cortical neurons in metabolic and unclassified amentias. In R. Katzman (Ed.), Congenital and acquired cognitive disorders. New York: Raven Press, 1979.Google Scholar
  61. Purpura, D., Suzuki, K., Rapin, I., & Wurzelmann, S. Dendritic varicosities and microtubule disarray in human cortical neurons in developmental failure. Neuroscience Abstracts, 1980, 6, 339.Google Scholar
  62. Rakic, P. Prenatal development of the visual system in rhesus monkey. Philological Transactions Royal Society of London B., 1977, 278, 245–260.CrossRefGoogle Scholar
  63. Rakic, P. Developmental events leading to laminar and areal organization of neocortex. In F. Schmitt (Ed.), The organization of the cerebral cortex. Cambridge, MA: MIT Press, 1981.Google Scholar
  64. Rakic, P. & Yakovlev, P. Development of the corpus callosum and cavum septi in man. Journal of Comparative Neurology, 1968, 132, 45–72.PubMedCrossRefGoogle Scholar
  65. Rebeiz, J., Wolf, P., & Adams, R.D. Dystrophic cortical myelinogenesis (“driftwood cortex”): A hitherto unrecognized form of developmental anomaly of the cerebrum in man. Acta Neuro-pathologica, 1968, 11, 237–252.Google Scholar
  66. Richman, D., Stewart, R., & Caviness, V. Cerebral microgyria in a 27 week fetus: An architecture and topographic analysis. Journal of Neuropathology and Experimental Neurology, 1974, 33, 374–384.PubMedCrossRefGoogle Scholar
  67. Richman, D., Stewart, R., Hutchinson, J., & Caviness, V. Mechanical model of brain convolutional development. Science, 1975, 189, 18–21.CrossRefGoogle Scholar
  68. Riggs, H., McGrath, J., & Schwarz, H. Malformation of the adult brain (albino rat) resulting from prenatal irradiation. Journal of Neuropathology and Experimental Neurology, 1956, 15, 432–447.PubMedCrossRefGoogle Scholar
  69. Robain, O. & Lyon, G. Les microcephalies familiales par malformation cerebrale. Etude Anatomoclinique. Acta Neuropathology, 1972, 20, 96–109.CrossRefGoogle Scholar
  70. Selkoe, D. Altered protein composition of isolated human cortical neurons in Alzheimer’s Disease. Annals of Neurology, 1980, 8, 468–478.PubMedCrossRefGoogle Scholar
  71. Shoukimas, G. & Hinds, J. The development of cerebral cortex in the embryonic mouse: An electronmicroscopic serial section analysis. Journal of Comparative Neurology, 1978, 179, 795–830.PubMedCrossRefGoogle Scholar
  72. Sidman, R. & Rakic, P. Neuronal migration with special reference to the developing human brain: A review. Brain Research, 1973, 62, 1–35.CrossRefGoogle Scholar
  73. Stewart, R., Richman, D., & Caviness, V.S. Lissencephaly and pachygyria: An architectonic and topographical analysis. Acta Neuropathologica, 1975, 31, 1–12.PubMedCrossRefGoogle Scholar
  74. Volpe, J. Neurology of the newborn. Philadelphia: W.B. Saunders, 1981.Google Scholar
  75. Volpe, J. & Adams, R. Cerebro-hepato-renal syndrome of Zellweger: An inherited disorder of neuronal migration. Acta Neuropathologica, 1972, 20, 175–198.PubMedCrossRefGoogle Scholar
  76. Von Bonin, G. & Mehler, W. On the columnar arrangement of nerve cells in the cerebral cortex. Brain Research, 1971, 27, 1–9.CrossRefGoogle Scholar
  77. Williams, R., Ferrante, R., & Caviness, V. The cellular pathology of microgyria: A golgi analysis. Acta Neuropathologica, 1976, 36, 269–283.PubMedCrossRefGoogle Scholar
  78. Williams, R., Hauser, S., Purpura, D.P., DeLong, G.R., & Swisher, C.N. Autism and mental retardation: Neuropathological studies performed in four retarded persons with autistic behavior. Archives of Neurology, 1980, 37, 749–753.PubMedCrossRefGoogle Scholar
  79. Wisniewski, K., Haddad, R., Rabe, A., Dumas, R., & Shek, J. Experimental lissencephaly in the ferret. Journal of Neuropathology and Experimental Neurology, 1977, 36, 638.Google Scholar
  80. Yakovlev, P. Pathoarchitectonic studies of cerebral malformations. III. Archinecephalies. Journal of Neuropathology and Experimental Neurology, 1959, 18, 22–55.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  1. 1.Harvard Medical School, Southard Laboratory, Eunice Kennedy Shriver CenterHarvard Medical SchoolWalthamUSA

Personalised recommendations