Advertisement

Carbon-Carbon Bond-Forming Reactions of Compounds of Boron, Silicon, and Tin

  • Francis A. Carey
  • Richard J. Sundberg
Part of the Advanced Organic Chemistry book series (AOC)

Abstract

In this chapter, we will discuss examples of the use of the compounds of boron, silicon, and tin in organic synthesis to form carbon-carbon bonds. These elements are at the boundary of the metals and nonmetals, with boron being the most electronegative and tin the least electronegative of the three. The neutral alkyl derivatives of boron have the formula R3B, whereas those of silicon and tin have the formulas R3Si and R4Sn. These compounds are relatively volatile, nonpolar substances which exist as discrete molecules and in which the carbon-metal bonds are largely covalent. The synthetically important reactions of these compounds involve transfer of a carbon substituent with one (radical equivalent) or two (car-banion equivalent) electrons to a reactive carbon center. This chapter will emphasize the nonradical reactions. In contrast to the reactions of the transition metals, during which there is often a change in oxidation level at the metal, there is usually no oxidation level change at the heteroatom during the reactions of boron, silicon, and tin compounds.

Keywords

Boronic Acid Organotin Compound Lewis Acid Catalyst Boronate Ester Cyclic Transition State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

Organoboron Compounds

  1. H. C. Brown, Organic Synthesis via Boranes, Wiley, New York, 1975.Google Scholar
  2. E. Negishi and M. Idacavage, Org. React. 33, 1 (1985).Google Scholar
  3. A. Pelter, K. Smith, and H. C. Brown, Borane Reagents, Academic Press, New York, 1988.Google Scholar
  4. A. Pelter, in Rearrangements in Ground and Excited States, P. de Mayo (ed.), Vol. 2, Academic Press, New York, 1980, Chapter 8.Google Scholar

Organosilicon Compounds

  1. T. H. Chan and I. Fleming, Synthesis, 761 (1979).Google Scholar
  2. E. W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981.Google Scholar
  3. I. Fleming, J. Dunogvès, and R. Smithers, Org. React. 37, 57, 1989.Google Scholar
  4. W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar

Organotin Compounds

  1. M. Peyeyre, J.-P. Quintard, and A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987.Google Scholar
  2. 104.
    M. Tanaka, Tetrahedron Lett., 2601 (1979).Google Scholar
  3. 105.
    G. T. Crisp, W. J. Scott, and J. K. Stille, J. Am. Chem. Soc. 106, 7500 (1984).CrossRefGoogle Scholar
  4. 1a.
    N. Miyaura, K. Yamada, and A. Suzuki, Tetrahedron Lett., 3437 (1979).Google Scholar
  5. b.
    F. K. Sheffy, J. P. Godschalx, and J. K. Stille, J. Am. Chem. Soc. 106, 4838 (1984).CrossRefGoogle Scholar
  6. c.
    P. Jacob III and H. C. Brown, J. Am. Chem. Soc. 98, 7832 (1976).CrossRefGoogle Scholar
  7. d.
    D. Milstein and J. K. Stille, J. Org. Chem. 44, 1613 (1979).CrossRefGoogle Scholar
  8. e.
    H. C. Brown and K. K. Wang, J. Org. Chem. 51, 4514 (1986).CrossRefGoogle Scholar
  9. f.
    H. Yatagai, Y. Yamamoto, and K. Maruyama, J. Am. Chem. Soc. 102, 4548 (1980).CrossRefGoogle Scholar
  10. g.
    R. Mohan and J. A. Katzenellenbogen, J. Org. Chem. 49, 1234 (1984).CrossRefGoogle Scholar
  11. h.
    B. M. Trost and A. Brandi, J. Org. Chem. 49, 4811 (1984).CrossRefGoogle Scholar
  12. i.
    H. C. Brown and T. Imai, J. Am. Chem. Soc. 105, 6285 (1983).CrossRefGoogle Scholar
  13. j.
    H. C. Brown, N. G. Bhat, and J. B. Campbell, Jr., J. Org. Chem. 51, 3398 (1986).CrossRefGoogle Scholar
  14. 2a.
    H. C. Brown, M. M. Rogic, H. Nambu, and M. W. Rathke, J. Am. Chem. Soc. 91, 2147 (1969); H. C. Brown, H. Nambu, and M. M. Rogic, J. Am. Chem. Soc. 91, 6852 (1969).CrossRefGoogle Scholar
  15. b.
    H. C. Brown and R. A. Coleman, J. Am. Chem. Soc. 91, 4606 (1969).CrossRefGoogle Scholar
  16. c.
    H. C. Brown and G. W. Kabalka, J. Am. Chem. Soc. 92, 714 (1970).CrossRefGoogle Scholar
  17. d.
    G. Zweifel, R. P. Fisher, J. T. Snow, and C. C. Whitney, J. Am. Chem. Soc. 93, 6309 (1971).CrossRefGoogle Scholar
  18. e.
    H. C. Brown and M. W. Rathke, J. Am. Chem. Soc. 89, 2738 (1967).CrossRefGoogle Scholar
  19. f.
    H. C. Brown and M. M. Rogic, J. Am. Chem. Soc. 91, 2146 (1969). 3. See references in Scheme 9.2.CrossRefGoogle Scholar
  20. 4a.
    H. C. Brown, H. D. Lee, and S. U. Kulkarni, J. Org. Chem. 51, 5282 (1986).CrossRefGoogle Scholar
  21. b.
    J. A. Sikorski, N. G. Bhat, T. E. Cole, K. K. Wang, and H. C. Brown, J. Org. Chem. 51, 4521 (1986).CrossRefGoogle Scholar
  22. c.
    S. U. Kulkarni, H. D. Lee, and H. C. Brown, J. Org. Chem. 45, 4542 (1980).CrossRefGoogle Scholar
  23. d.
    M. C. Welch and T. A. Bryson, Tetrahedron Lett. 29, 521 (1988).CrossRefGoogle Scholar
  24. 5a.
    D. R. McKean, G. Parrinello, A. F. Renaldo, and J. K. Stille, J. Org. Chem. 52, 422 (1987).CrossRefGoogle Scholar
  25. b.
    L. Kuwajima and H. Urabe, J. Am. Chem. Soc. 104, 6830 (1982).CrossRefGoogle Scholar
  26. c.
    A. Pelter, K. J. Gould, and C. R. Harrison, Tetrahedron Lett., 3327 (1975).Google Scholar
  27. d.
    A. Pelter and R. A. Drake, Tetrahedron Lett. 29, 4181 (1988).CrossRefGoogle Scholar
  28. e.
    L. E. Overman and M. J. Sharp, J. Am. Chem. Soc. 110, 612 (1988).CrossRefGoogle Scholar
  29. f.
    H. C. Brown and S. U. Kulkarni, J. Org. Chem. 44, 2422 (1979).CrossRefGoogle Scholar
  30. 6a.
    W. R. Roush, M. A. Adam, and D. J. Harris, J. Org. Chem. 50, 2000 (1985).CrossRefGoogle Scholar
  31. b.
    S. J. Danishefsky, S. DeNinno, and P. Lartey, J. Am. Chem. Soc. 109, 2082 (1987).CrossRefGoogle Scholar
  32. c.
    J. Hooz and D. M. Gunn, J. Am. Chem. Soc. 91, 6195 (1969).CrossRefGoogle Scholar
  33. 7a, b.
    H. C. Brown and N. G. Bhat, J. Org. Chem. 53, 6009 (1988).CrossRefGoogle Scholar
  34. c.
    Y. Satoh, H. Serizawa, N. Miyzura, S. Hara, and A. Suzuki, Tetrahedron Lett. 29, 1811 (1988).CrossRefGoogle Scholar
  35. d, e.
    H. C. Brown, D. Basavaiah, S. U. Kulkarni, N. Bhat, and J. V. N. Vara Prasad, J. Org. Chem. 53, 239 (1988).CrossRefGoogle Scholar
  36. 8a.
    J. A. Marshall, S. L. Crooks, and B. S. DeHoff, J. Org. Chem. 53, 1616 (1988).CrossRefGoogle Scholar
  37. b.
    B. M. Trost and T. Sato, J. Am. Chem. Soc. 107, 719 (1985).CrossRefGoogle Scholar
  38. 9a.
    W. E. Fristad, D. S. Dime, T. R. Bailey, and L. A. Paquette, Tetrahedron Lett., 1999 (1979).Google Scholar
  39. b.
    E. Piers and H. E. Morton, J. Org. Chem. 45, 4263 (1980).CrossRefGoogle Scholar
  40. c.
    J. C. Bottaro, R. N. Hanson, and D. E. Seitz, J. Org. Chem. 46, 5221 (1981).CrossRefGoogle Scholar
  41. d.
    Y. Yamamoto and A. Yanagi, Heterocycles 16, 1161 (1981).CrossRefGoogle Scholar
  42. e.
    M. B. Anderson and P. L. Fuchs, Synth. Commun. 17, 621 (1987); B. A. Narayanan and W. H. Bundle, Tetrahedron Lett. 28, 6261 (1987).CrossRefGoogle Scholar
  43. f.
    A. Hosomi, M. Sato, and H. Sakurai, Tetrahedron Lett., 429 (1979).Google Scholar
  44. 10.
    P. A. Grieco and W. F. Fobare, Tetrahedron Lett. 27, 5067 (1986).CrossRefGoogle Scholar
  45. 11.
    E. J. Corey and W. L. Seibel, Tetrahedron Lett. 27, 905 (1986).CrossRefGoogle Scholar
  46. 12a.
    J. A. Marshall, S. L. Crooks, and B. S. DeHoff, J. Org. Chem. 53, 1616 (1988); J. A. Marshall and W. Y. Gung, Tetrahedron Lett. 29, 3899 (1988).CrossRefGoogle Scholar
  47. b.
    E. Moret and M. Schlosser, Tetrahedron Lett. 25, 4491 (1984).CrossRefGoogle Scholar
  48. c.
    L. K. Truesdale, D. Swanson, and R. C. Sun, Tetrahedron Lett. 26, 5009 (1985).CrossRefGoogle Scholar
  49. d.
    B. M. Trost and T. Sato, J. Am. Chem. Soc. 107, 719 (1985).CrossRefGoogle Scholar
  50. e.
    F. Bjorkling, T. Norin, C. R. Unelius, and R. B. Miller, J. Org. Chem. 52, 292 (1987).CrossRefGoogle Scholar
  51. f.
    J. K. Stille and B. L. Groh, J. Am. Chem. Soc. 109, 813 (1987).CrossRefGoogle Scholar
  52. g.
    Y. Yamamoto and A. Yanagi, Heterocycles 16, 1161 (1981).CrossRefGoogle Scholar
  53. h.
    R. L. Funk and G. L. Bolton, J. Org. Chem. 49, 5021 (1984).CrossRefGoogle Scholar
  54. i.
    L. E. Overman, T. C. Malone, and G. P. Meier, J. Am. Chem. Soc. 105, 6993 (1983).CrossRefGoogle Scholar
  55. j.
    Y. Naruse, T. Esaki, and H. Yamamoto, Tetrahedron Lett. 29, 1417 (1988).CrossRefGoogle Scholar
  56. k.
    J.-M. Fu, M. J. Sharp, and V. Sniekus, Tetrahedron Lett. 29, 5459 (1988).CrossRefGoogle Scholar
  57. 13a.
    H. C. Brown, T. Imai, M. C. Desai, and B. Singaran, J. Am. Chem. Soc. 107, 4980 (1985).CrossRefGoogle Scholar
  58. b,c.
    H. C. Brown, R. K. Bakshi, and B. Singaran, J. Am. Chem. Soc. 110, 1529 (1988).CrossRefGoogle Scholar
  59. d.
    H. C. Brown, M. Srebnik, R. K. Bakshi, and T. E. Cole, J. Am. Chem. Soc. 109, 5420 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations