Organometallic Compounds of Group I and II Metals

  • Francis A. Carey
  • Richard J. Sundberg
Part of the Advanced Organic Chemistry book series (AOC)


The use of organometallic reagents in organic synthesis had its beginning around 1900 with the work of Victor Grignard, who discovered that alkyl and aryl halides reacted with magnesium metal to give homogeneous solutions. The “Grignard reagents” proved to be reactive carbon nucleophiles and have remained very useful synthetic reagents since that time. Organolithium reagents came into synthetic use somewhat later. In the last 25 years, the synthetic utility of reactions involving metal ions and organometallic compounds has expanded enormously. Certain of the transition metals, such as copper, palladium, and nickel, have gained important places in synthetic methodology. In addition to providing reagents for organic synthesis, the systematic study of the reactions of organic compounds with metal ions and complexes has created a large number of organometallic compounds, many having unique structures and reactivity. In this chapter, we will discuss the Grignard reagents and organolithium compounds. In Chapter 8, the role of transition metals in organic synthesis will be given attention.


Organometallic Compound Aryl Halide Grignard Reagent Tertiary Alcohol Organomercury Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. R. C. Larock, Organomercury Compounds in Organic Synthesis, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
  2. B. J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon, Oxford, 1974.Google Scholar
  3. B. J. Wakefield, Organolithium Methods, Academic Press, Orlando, Florida, 1988.Google Scholar
  4. 1a.
    H. Neumann and D. Seebach, Tetrahedron Lett., 4839 (1976).Google Scholar
  5. b.
    P. Canonne, G. Foscolos, and G. Lemay, Tetrahedron Lett., 155 (1980).Google Scholar
  6. c.
    T. L. Shih, M. Wyvratt, and H. Mrozik, J. Org. Chem. 52, 2029 (1987).CrossRefGoogle Scholar
  7. d.
    R. K. Boeckman, Jr., and E. W. Thomas, J. Am. Chem. Soc. 101, 987 (1979).CrossRefGoogle Scholar
  8. e.
    G. M. Rubottom and C. Kim, J. Org. Chem. 48, 1550 (1983).CrossRefGoogle Scholar
  9. f.
    S. L. Buchwald, B. T. Watson, R. T. Lum, and W. A. Nugent, J. Am. Chem. Soc. 109, 7137 (1987).CrossRefGoogle Scholar
  10. g.
    T. Okazoe, K. Takai, K. Oshima, and K. Utimoto, J. Org. Chem. 52, 4410 (1987).CrossRefGoogle Scholar
  11. h.
    J. W. Frankenfeld and J. J. Werner, J. Org. Chem. 34, 3689 (1969).CrossRefGoogle Scholar
  12. i.
    E. R. Burkhardt and R. D. Rieke, J. Org. Chem. 50, 416 (1985).CrossRefGoogle Scholar
  13. 2.
    R. W. Herr and C. R. Johnson, J. Am. Chem. Soc. 92, 4979 (1970).CrossRefGoogle Scholar
  14. 3a.
    J. S. Sawyer, A. Kucerovy, T. L. Macdonald, and G. J. McGarvey, J. Am. Chem. Soc. 110, 842 (1988).CrossRefGoogle Scholar
  15. b.
    T. Cohen and J. R. Matz, J. Am. Chem. Soc. 102, 6900 (1980).CrossRefGoogle Scholar
  16. c.
    C. R. Johnson and J. R. Medich, J. Org. Chem. 53, 4131 (1988).CrossRefGoogle Scholar
  17. d.
    B. M. Trost and T. N. Nanninga, J. Am. Chem. Soc. 107, 1293 (1985).CrossRefGoogle Scholar
  18. e.
    T. Morwick, Tetrahedron Lett. 21, 3227 (1980).CrossRefGoogle Scholar
  19. f.
    W. C. Still and C. Sreekumar, J. Am. Chem. Soc. 102, 1201 (1980).CrossRefGoogle Scholar
  20. g.
    R. F. Cunio and F. J. Clayton, J. Org. Chem. 41, 1480 (1976).CrossRefGoogle Scholar
  21. 4a.
    J. J. Fitt and H. W. Gschwend, J. Org. Chem. 45, 4258 (1980).CrossRefGoogle Scholar
  22. b.
    S. Aikyama and J. Hooz, Tetrahedron Lett, 4115 (1973).Google Scholar
  23. c.
    K. P. Klein and C. R. Hauser, J. Org. Chem. 32, 1479 (1967).CrossRefGoogle Scholar
  24. d.
    B. M. Graybill and D. A. Shirley, J. Org. Chem. 31, 1221 (1966).CrossRefGoogle Scholar
  25. e.
    M. M. Midland, A. Tramontano, and J. R. Cable, J. Org. Chem. 45, 28 (1980).CrossRefGoogle Scholar
  26. f.
    W. Fuhrer and H. W. Gschwend, J. Org. Chem. 44, 1133 (1979).CrossRefGoogle Scholar
  27. g.
    D. F. Taber and R. W. Korsmeyer, J. Org. Chem. 43, 4925 (1978).CrossRefGoogle Scholar
  28. h.
    R. R. Schmidt, J. Talbiersky, and P. Russegger, Tetrahedron Lett., 4273 (1979).Google Scholar
  29. i.
    R. M. Carlson, Tetrahedron Lett., 111 (1978).Google Scholar
  30. j.
    R. J. Sundberg, R. Broome, C. P. Walters, and D. Schnur, J. Heterocycl. Chem. 18, 807 (1981).CrossRefGoogle Scholar
  31. 5a.
    M. P. Dreyfuss, J. Org. Chem. 28, 3269 (1963).CrossRefGoogle Scholar
  32. b.
    P. J. Pearce, D. H. Richards, and N. F. Scilly, Org. Synth. 52, 19 (1972).Google Scholar
  33. c.
    U. Schöllkopf, H. Küppers, H.-J. Traencker, and W. Pitteroff, Justus Liebigs Ann. Chem. 704, 120 (1967).CrossRefGoogle Scholar
  34. d.
    J. V. Hay and T. M. Harris, Org. Synth. 53, 56 (1973).Google Scholar
  35. e.
    F. Sato, M. Inoue, K. Oguro, and M. Sato, Tetrahedron Lett., 4303 (1979).Google Scholar
  36. f.
    J. C. H. Hwa and H. Sims, Org. Synth. V, 608 (1973).Google Scholar
  37. 6a.
    J. H. Rigby and C. Senanyake, J. Am. Chem. Soc. 109, 3147 (1987).CrossRefGoogle Scholar
  38. b.
    K. Takai, Y. Kataoka, T. Okazoe, and K. Utimoto, Tetrahedron Lett. 29, 1065 (1988).CrossRefGoogle Scholar
  39. c.
    E. Nakamura, S. Aoki, K. Sekiya, H. Oshino, and I. Kuwajima, J. Am. Chem. Soc. 109, 8056 (1987).CrossRefGoogle Scholar
  40. d.
    H. A. Whaley, J. Am. Chem. Soc. 93, 3767 (1971).CrossRefGoogle Scholar
  41. 7.
    J. Barluenga, F. J. Fananas, and M. Yus, J. Org. Chem. 44, 4798 (1979).CrossRefGoogle Scholar
  42. 8a.
    b. W. C. Still and J. H. McDonald III, Tetrahedron Lett. 21, 1031 (1980).CrossRefGoogle Scholar
  43. c.
    E. Casadevall and Y. Povet, Tetrahedron Lett., 2841 (1976).Google Scholar
  44. 9.
    P. Beak, J. E. Hunter, Y. M. Jan, and A. P. Wallin, J. Am. Chem. Soc. 109, 5403 (1987).CrossRefGoogle Scholar
  45. 10.
    C. J. Kowalski and M. S. Haque, J. Org. Chem. 50, 5140 (1985).CrossRefGoogle Scholar
  46. 11.
    C. Fehr, J. Galindo, and R. Perret, Helv. Chim. Acta 70, 1745 (1987).CrossRefGoogle Scholar
  47. 12.
    M. P. Cooke, Jr., and I. N. Houpis, Tetrahedron Lett. 26, 4987 (1985); E. Piers and P. C. Marais, Tetrahedron Lett. 29, 4053 (1988).CrossRefGoogle Scholar
  48. 13a.
    C. Phillips, R. Jacobson, B. Abrahams, H. J. Williams, and C. R. Smith, J. Org. Chem. 45, 1920 (1980).CrossRefGoogle Scholar
  49. b.
    T. Cohen and J. R. Matz, J. Am. Chem. Soc. 102, 6900 (1980).CrossRefGoogle Scholar
  50. c.
    T. R. Govindachari, P. C. Parthasarathy, H. K. Desai, and K. S. Ramachandran, Indian J. Chem. 13, 537 (1975).Google Scholar
  51. d.
    W. C. Still, J. Am. Chem. Soc. 100, 1481 (1978).CrossRefGoogle Scholar
  52. e.
    E. J. Corey and D. R. Williams, Tetrahedron Lett, 3847 (1977).Google Scholar
  53. f.
    T. Okazoe, K. Takai, K. Oshiama, and K. Utimoto, J. Org. Chem. 52, 4410 (1987).CrossRefGoogle Scholar
  54. g.
    M. A. Adams, A. J. Duggan, J. Smolanoff, and J. Meinwald, J. Am. Chem. Soc. 101, 5364 (1979).CrossRefGoogle Scholar
  55. h.
    S. O. deSilva, M. Watanabe, and V. Snieckus, J. Org. Chem. 44, 4802 (1979).CrossRefGoogle Scholar
  56. 14.
    M. Kitamura, S. Suga, K. Kawai, and R. Noyori, J. Am. Chem. Soc. 108, 6071 (1986); K. Soai, A. Ookawa, T. Kaba, and K. Ogawa, J. Am. Chem. Soc. 109, 7111 (1987); M. Kitamura, S. Okada, and R. Noyori, J. Am. Chem. Soc. 111, 4028 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations