Reactions of Carbon Nucleophiles with Carbonyl Groups

  • Francis A. Carey
  • Richard J. Sundberg
Part of the Advanced Organic Chemistry book series (AOC)


The reactions described in this chapter include some of the most useful synthetic methods for carbon-carbon bond formation: the aldol and the Claisen condensations, the Robinson annulation, and the Wittig reaction and related olefination reactions. All of these processes involve the addition of a carbon nucleophile to a carbonyl group. The type of product that is isolated depends on the nature of the substituent (X) on the carbon nucleophile, the substituents (A and B) on the carbonyl group, and the ways in which A, B, and X interact to control the reaction pathways available to the addition intermediate.


Carbonyl Compound Aldol Condensation Mannich Reaction Wittig Reaction Methyl Vinyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

Aldol Condensations

  1. D. A. Evans, J. V. Nelson, and T. R. Taber, Top. Stereochem. 13, 1 (1982).CrossRefGoogle Scholar
  2. C. H. Heathcock, in Comprehensive Carbanion Chemistry, E. Buncel and T. Durst (ed.), Elsevier, Amsterdam, 1984.Google Scholar
  3. C. H. Heathcock, in Asymmetric Synthesis, Vol 3. J. D. Morrison (ed.), Academic Press, New York, 1984. S. Masamune, W. Choy, J. S. Petersen, and L. R. Sita, Angew. Chem. Int. Ed. Engl. 24, 1 (1985).Google Scholar
  4. A. T. Nielsen and W. T. Houlihan, Org. React. 16, 1 (1968).Google Scholar
  5. T. Mukaiyama, Org. React. 28, 203 (1982).Google Scholar

Annulation Reactions

  1. R. E. Gawley, Synthesis, 777 (1976).Google Scholar
  2. M. E. Jung, Tetrahedron 32, 3 (1976).CrossRefGoogle Scholar

Mannich Reactions

  1. F. F. Blicke, Org. React. 1, 303 (1942).Google Scholar
  2. H. Böhme and M. Heake, in Iminium Salts in Organic Chemistry, H. Böhme and H. G. Viehe (eds.), Wiley-Interscience, New York, 1976, pp. 107-223.Google Scholar

Phosphorus-Stabilized Ylides and Carbanions

  1. J. Boutagy and R. Thomas, Chem. Rev. 74, 87 (1974).CrossRefGoogle Scholar
  2. I. Gosney and A. G. Rowley, in Organophosphorus Reagents in Organic Synthesis, J. I. G. Cadogan (ed.), Academic Press, London, 1979, pp. 17–153.Google Scholar
  3. A. Maercker, Org. React. 14, 270 (1965).Google Scholar
  4. W. S. Wadsworth, Jr., Org. React. 25, 73 (1977).Google Scholar

Silicon-Stabilized Carbanions

  1. D. J. Ager, Synthesis, 384 (1984).Google Scholar

Sulfur Ylides

  1. B. M. Trost and L. S. Melvin, Sulfur Ylides, Academic Press, New York, 1975.Google Scholar
  1. 1a.
    G. Ksander, J. E. McMurry, and N. Johnson, J. Org. Chem. 42, 1180 (1977).CrossRefGoogle Scholar
  2. b.
    J. Zabicky, J. Chem. Soc, 683 (1961).Google Scholar
  3. c.
    G. Stork, G. A. Kraus, and G. A. Garcia, J. Org. Chem. 39, 3459 (1974).CrossRefGoogle Scholar
  4. d.
    H. Midorikawa, Bull. Chem. Soc. Jpn. 27, 210 (1954).CrossRefGoogle Scholar
  5. e.
    G. Stork and S. R. Dowd, Org. Synth. 55, 46 (1976).Google Scholar
  6. f.
    E. C. Du Feu, F. J. McQuillin, and R. Robinson, J. Chem. Soc, 53 (1937).Google Scholar
  7. g.
    E. Buchta, G. Wolfrum, and H. Ziener, Chem. Ber. 91, 1552 (1958).CrossRefGoogle Scholar
  8. h.
    L. H. Briggs and E. F. Orgias, J. Chem. Soc, C., 1885 (1970).Google Scholar
  9. i.
    J. A. Profitt and D. S. Watt, Org. Synth. 56, 1984 (1977).Google Scholar
  10. j.
    U. Hengartner and V. Chu, Org. Synth. 58, 83 (1978).Google Scholar
  11. k.
    E. Giacomini, M. A. Loreto, L. Pellacani, and P. A. Tardella, J. Org. Chem. 45, 519 (1980).CrossRefGoogle Scholar
  12. 1.
    N. Narasimhan and R. Ammanamanchi, J. Org. Chem. 48, 3945 (1983).CrossRefGoogle Scholar
  13. m.
    M. P. Bosch, F. Camps, J. Coll, A. Guerro, T. Tatsouka, and J. Meinwald, J. Org. Chem. 51, 773 (1986).CrossRefGoogle Scholar
  14. 2a.
    M. W. Rathke and D. F. Sullivan, J. Am. Chem. Soc. 95, 3050 (1973).CrossRefGoogle Scholar
  15. b.
    E. J. Corey, H. Yamamoto, D. K. Herron, and K. Achiwa, J. Am. Chem. Soc. 92, 6635 (1970).CrossRefGoogle Scholar
  16. c.
    E. J. Corey and D. E. Cane, J. Org. Chem. 36, 3070 (1971).CrossRefGoogle Scholar
  17. d.
    E. W. Yabkee and D. J. Cram, J. Am. Chem. Soc. 92, 6328 (1970).CrossRefGoogle Scholar
  18. e.
    W. G. Dauben, C. D. Poulter, and C. Suter, J. Am. Chem. Soc. 92, 7408 (1970).CrossRefGoogle Scholar
  19. f.
    P. A. Grieco and K. Hiroi, J. Chem. Soc, Chem. Commun., 1317 (1972).Google Scholar
  20. g.
    T. Mukaiyama, M. Higo, and H. Takei, Bull. Chem. Soc. Jpn. 43, 2566 (1970).CrossRefGoogle Scholar
  21. h.
    I. Vlattas, I. T. Harrison, L. Tokes, J. H. Fried, and A. D. Cross, J. Org. Chem. 33, 4176 (1968).CrossRefGoogle Scholar
  22. i.
    A. T. Nielsen and W. R. Carpenter, Org. Synth. V, 288 (1973).Google Scholar
  23. j.
    M. L. Miles, T. M. Harris, and C. R. Hauser, Org. Synth. V, 718 (1973).Google Scholar
  24. k.
    A. P. Beracierta and D. A. Whiting, J. Chem. Soc, Perkin Trans. 1, 1257 (1978).CrossRefGoogle Scholar
  25. 1.
    T. Amatayakul, J. R. Cannon, P. Dampawan, T. Dechatiwongse, R. G. F. Giles, D. Huntrakul, K. Kusamran, M. Mokkhasamit, C. L. Raston, V. Reutrakul, and A. H. White, Aust. J. Chem. 32, 71 (1979).CrossRefGoogle Scholar
  26. m.
    R. M. Coates, S. K. Shah, and R. W. Mason, J. Am. Chem. Soc. 101, 6765 (1979).CrossRefGoogle Scholar
  27. n.
    K. A. Parker and T. H. Fedynyshyn, Tetrahedron Lett., 1657 (1979).Google Scholar
  28. o.
    M. Miyashita and A. Yoshikishi, J. Am. Chem. Soc. 96, 1917 (1974).CrossRefGoogle Scholar
  29. p.
    W. R. Roush, J. Am. Chem. Soc. 102, 1390 (1980).CrossRefGoogle Scholar
  30. q.
    L. Fitjer and U. Quabeck, Synth. Commun. 15, 855 (1985).CrossRefGoogle Scholar
  31. r.
    A. Padwa, L. Brodsky, and S. Clough, J. Am. Chem. Soc. 94, 6767 (1972).CrossRefGoogle Scholar
  32. s.
    W. R. Roush, J. Am. Chem. Soc. 102, 1390 (1980).CrossRefGoogle Scholar
  33. t.
    C. R. Johnson, K. Mori, and A. Nakanishi, J. Org. Chem. 44, 2065 (1979).CrossRefGoogle Scholar
  34. u.
    T. Yanami, M. Miyashita, and A. Yoshikoshi, J. Org. Chem. 45, 607 (1980).CrossRefGoogle Scholar
  35. 3a.
    K. D. Croft, E. L. Ghisalberti, P. R. Jefferies, and A. D. Stuart, Aust. J. Chem. 32, 2079 (1971).CrossRefGoogle Scholar
  36. b.
    L. H. Briggs and G. W. White, J. Chem. Soc, C, 3077 (1971).Google Scholar
  37. c.
    D. F. Taber and B. P. Gunn, J. Am. Chem. Soc. 101, 3992 (1979).CrossRefGoogle Scholar
  38. d.
    G. V. Kryshtal, V. V. Kulganek, V. F. Kucherov, and L. A. Yanovskaya, Synthesis, 107 (1979).Google Scholar
  39. e.
    S. F. Brady, M. A. Ilton, and W. S. Johnson, J. Am. Chem. Soc. 90, 2882 (1968).CrossRefGoogle Scholar
  40. f.
    R. M. Coates and J. E. Shaw, J. Am. Chem. Soc. 92, 5657 (1970).CrossRefGoogle Scholar
  41. g.
    K. Mitsuhashi and S. Shiotoni, Chem. Pharm. Bull. 18, 75 (1970).CrossRefGoogle Scholar
  42. h.
    G. Wittig and H.-D. Frommeld, Chem. Ber. 97, 3548 (1964).CrossRefGoogle Scholar
  43. i.
    R. J. Sundberg, P. A. Bukowick, and F. O. Holcombe, J. Org. Chem. 32, 2938 (1967).CrossRefGoogle Scholar
  44. j.
    D. R. Howton, J. Org. Chem. 10, 277 (1945).CrossRefGoogle Scholar
  45. k.
    Y. Chan and W. W. Epstein, Org. Synth. 53, 48 (1973).Google Scholar
  46. 1.
    I. Fleming and M. Woolias, J. Chem. Soc, Perkin Trans. 1, 827 (1979).CrossRefGoogle Scholar
  47. m.
    F. Johnson, K. G. Paul, D. Favara, R. Ciabatti, and U. Guzzi, J. Am. Chem. Soc 104, 2190 (1982).CrossRefGoogle Scholar
  48. n.
    M. Ihara, M. Suzuki, K. Fukumoto, T. Kametani, and C. Kabuto, J. Am. Chem. Soc. 110, 1963 (1988).CrossRefGoogle Scholar
  49. 4a.
    W. A. Mosher and R. W. Soeder, J. Org. Chem. 36, 1561 (1971).CrossRefGoogle Scholar
  50. b.
    M. R. Roberts and R. H. Schlessinger, J. Am. Chem. Soc. 101, 7626 (1979).CrossRefGoogle Scholar
  51. c.
    J. E. McMurry and T. E. Glass, Tetrahedron Lett., 2575 (1971).Google Scholar
  52. d.
    D. J. Cram, A. Langemann, and F. Hauck, J. Am. Chem. Soc. 81, 5750 (1959).CrossRefGoogle Scholar
  53. e.
    W. G. Dauben and J. Ipaktschi, J. Am. Chem. Soc. 95, 5088 (1973).CrossRefGoogle Scholar
  54. f.
    T. J. Curphey and H. L. Kim, Tetrahedron Lett, 1441 (1968).Google Scholar
  55. g.
    K. P. Singh and L. Mandell, Chem. Ber. 96, 2485 (1963).CrossRefGoogle Scholar
  56. h.
    S. D. Lee, T. H. Chan, and K. S. Kwon, Tetrahedron Lett. 25, 3399 (1984).CrossRefGoogle Scholar
  57. i.
    J. F. Lavallee and P. Deslongchamps, Tetrahedron Lett. 29, 6033 (1988).CrossRefGoogle Scholar
  58. 5.
    T. T. Howarth, G. P. Murphy, and T. M. Harris, J. Am. Chem. Soc 91, 517 (1969).CrossRefGoogle Scholar
  59. 6a.
    E. Vedejs, K. A. J. Snoble, and P. L. Fuchs, J. Org. Chem. 38, 1178 (1973).CrossRefGoogle Scholar
  60. b.
    P. B. Dervan and M. A. Shippey, J. Am. Chem. Soc 98, 1265 (1976).CrossRefGoogle Scholar
  61. 7a.
    E. E. Schweizer and G. J. O’Neil, J. Org. Chem. 30, 2082 (1965); E. E. Schweizer, J. Am. Chem. Soc. 86, 2744 (1984).CrossRefGoogle Scholar
  62. b.
    G. Büchi and H. Wüest, Helv. Chim. Acta 54, 1767 (1971).CrossRefGoogle Scholar
  63. c.
    G. H. Posner, S.-B. Lu, and E. Asirvathan, Tetrahedron Lett. 27, 659 (1986).CrossRefGoogle Scholar
  64. 8.
    R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and W. M. McLamore, J. Am. Chem. Soc. 74, 4223 (1952).CrossRefGoogle Scholar
  65. 9.
    G. Stork, S. D. Darling, I. T. Harrison, and P. S. Wharton, J. Am. Chem. Soc. 84, 2018 (1962).CrossRefGoogle Scholar
  66. 10.
    J. R. Pfister, Tetrahedron Lett., 1281 (1980).Google Scholar
  67. 11.
    R. M. Jacobson, G. P. Lahm, and J. W. Clader, J. Org. Chem. 45, 395 (1980).CrossRefGoogle Scholar
  68. 12a.
    A. I. Meyers and N. Nazarenko, J. Org. Chem. 38, 175 (1973).CrossRefGoogle Scholar
  69. b.
    W. C. Still and F. L. Van Middlesworth, J. Org. Chem. 42, 1258 (1977).CrossRefGoogle Scholar
  70. 13a.
    R. V. Stevens and A. W. M. Lee, J. Am. Chem. Soc. 101, 7032 (1979).CrossRefGoogle Scholar
  71. b.
    C. H. Heathcock, E. Kleinman, and E. S. Binkley, J. Am. Chem. Soc. 100, 8036 (1978).CrossRefGoogle Scholar
  72. 14a.
    W. A. Kleschick and C. H. Heathcock, J. Org. Chem. 43, 1256 (1978).CrossRefGoogle Scholar
  73. b.
    S. D. Darling, F. N. Muralidharan, and V. B. Muralidharan, Tetrahedron Lett., 2761 (1979).Google Scholar
  74. 15a.
    M. Ertas and D. Seebach, Helv. Chim. Acta 68, 961 (1985).CrossRefGoogle Scholar
  75. b.
    S. Masamune, W. Choy, F. A. J. Kerdesky, and B. Imperiali, J. Am. Chem. Soc. 103, 1566 (1981).CrossRefGoogle Scholar
  76. c.
    C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem. 45, 1066 (1980).CrossRefGoogle Scholar
  77. d.
    R. Noyori, K. Yokoyama, J. Sakata, I. Kuwajima, E. Nakamura, and M. Shimizu, J. Am. Chem. Soc. 99, 1265 (1977).CrossRefGoogle Scholar
  78. e.
    D. A. Evans, E. Vogel, and J. V. Nelson, J. Am. Chem. Soc. 101, 6120 (1979); D. A. Evans, J. V. Nelson, E. Vogel, and T. R. Taber, J. Am. Chem. Soc. 103, 3099 (1981).CrossRefGoogle Scholar
  79. f.
    C. T. Buse and C. H. Heathcock, J. Am. Chem. Soc. 99, 8109 (1977).CrossRefGoogle Scholar
  80. 16.
    M. T. Reetz and A. Jung, J. Am. Chem. Soc. 105, 4833 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations