• Francis A. Carey
  • Richard J. Sundberg
Part of the Advanced Organic Chemistry book series (AOC)


This chapter is concerned with reactions which transform a functional group to a more highly oxidized derivative. There is a very large number of such processes, and the reactions have been chosen for discussion on the basis of general utility in organic synthesis. As the reactions are considered, it will become evident that the material in this chapter spans a wider variety of mechanistic patterns than is true for most of the earlier chapters. Because of this range in mechanisms, the chapter has been organized by the functional-group transformation that is accomplished. This organization facilitates comparison of the methods available for effecting a given synthetic transformation. In general, oxidants have been grouped into three classes: transition metal drivatives; oxygen, ozone, and peroxides; and other reagents.


Transition Metal Oxidant Oxidative Cleavage Allylic Alcohol Selenium Dioxide Allylic Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. R. L. Augustine (ed.), Oxidations, Vol. 1, Marcel Dekker, New York, 1969.Google Scholar
  2. R. L. Augustine and D. J. Trecker (eds.), Oxidations, Vol. 2, Marcel Dekker, New York, 1971.Google Scholar
  3. P. S. Bailey, Ozonization in Organic Synthesis, Vols. I and II, Academic Press, New York, 1978, 1982.Google Scholar
  4. G. Cainelli and G. Cardillo, Chromium Oxidations in Organic Chemistry, Springer-Verlag, New York, 1984.CrossRefGoogle Scholar
  5. L. J. Chinn, Selection of Oxidants in Synthesis, Marcel Dekker, New York, 1971.Google Scholar
  6. A. A. Frimer, Chem. Rev. 79, 359 (1979).CrossRefGoogle Scholar
  7. A. H. Haines, Methods for the Oxidation of Organic Compounds; Alkanes, Alkenes, Alkynes and Arynes, Academic Press, Orlando, Florida, 1985.Google Scholar
  8. W. J. Mijs and C. R. H. de Jonge, Organic Synthesis by Oxidation with Metal Compounds, Plenum, New York, 1986.CrossRefGoogle Scholar
  9. W. Trahanovsky (ed.), Oxidations in Organic Chemistry, Parts B-D, Academic Press, New York, 1973–1982.Google Scholar
  10. H. H. Wasserman and R. W. Murray (eds.), Singlet Oxygen, Academic Press, New York, 1979.Google Scholar
  11. K. B. Wiberg (ed.), Oxidations in Organic Chemistry, Part A, Academic Press, New York, 1965.Google Scholar
  12. 1a.
    Y. Butsugan, S. Yoshida, M. Muto, and T. Bito, Tetrahedron Lett, 1129 (1971).Google Scholar
  13. b.
    E. J. Corey and H. E. Ensley, J. Am. Chem. Soc. 97, 6908 (1975).CrossRefGoogle Scholar
  14. c.
    R. G. Gaughan and C. D. Poulter, J. Org. Chem. 44, 2441 (1979).CrossRefGoogle Scholar
  15. d.
    E. Vedejs, D. A. Engler, and J. E. Telschow, J. Org. Chem. 43, 188 (1978).CrossRefGoogle Scholar
  16. e.
    K. Akashi, R. E. Palermo, and K. B. Sharpless, J. Org. Chem. 43, 2063 (1978).CrossRefGoogle Scholar
  17. f.
    A. Hassner, R. H. Reuss, and H. W. Pinnick, J. Org. Chem. 40, 3427 (1975).CrossRefGoogle Scholar
  18. g.
    R. N. Mirrington and K. J. Schmalzl, J. Org. Chem. 37, 2877 (1972).CrossRefGoogle Scholar
  19. h.
    K. B. Sharpless and R. F. Lauer, J. Org. Chem. 39, 429 (1974).CrossRefGoogle Scholar
  20. i.
    J. A. Marshall and R. C. Andrews, J. Org. Chem. 50, 1602 (1985).CrossRefGoogle Scholar
  21. j.
    R. H. Schlessinger, J. J. Wood, A. J. Poos, R. A. Nugent, and W. H. Parsons, J. Org. Chem. 48, 1146 (1983).CrossRefGoogle Scholar
  22. k.
    R. K. Boeckman, Jr., J. E. Starett, Jr., D. G. Nickell, and P.-E. Sum, J. Am. Chem. Soc. 108, 5549 (1986).CrossRefGoogle Scholar
  23. 1.
    E. J. Corey and Y. B. Xiang, Tetrahedron Lett. 29, 995 (1988).CrossRefGoogle Scholar
  24. m.
    D. J. Plata and J. Kallmerten, J. Am. Chem. Soc. 110, 4041 (1988).CrossRefGoogle Scholar
  25. n.
    B. E. Rossiter, T. Katsuki, and K. B. Sharpless, J. Am. Chem. Soc. 103, 464 (1981).CrossRefGoogle Scholar
  26. o.
    J. Mulzer, A. Angermann, B. Schubert, and C. Seilz, J. Org. Chem. 51, 5294 (1986).CrossRefGoogle Scholar
  27. p.
    R. H. Schlessinger and R. A. Nugent, J. Am. Chem. Soc. 104, 1116 (1982).CrossRefGoogle Scholar
  28. q.
    H. Niwa, T. Mori, T. Hasegawa, and K. Yamada, J. Org. Chem. 51, 1015 (1986).CrossRefGoogle Scholar
  29. 2a.
    J. P. McCormick, W. Tomasik, and M. W. Johnson, Tetrahedron Lett., 607 (1981).Google Scholar
  30. b.
    H. C. Brown, J. H. Kawakami, and S. Ikegami, J. Am. Chem. Soc. 92, 6914 (1970).CrossRefGoogle Scholar
  31. c.
    R. M. Scarborough, Jr., B. H. Toder, and A. B. Smith III, J. Am. Chem. Soc. 102, 3904 (1980).CrossRefGoogle Scholar
  32. d.
    B. Rickborn and R. M. Gerkin, J. Am. Chem. Soc. 90, 4193 (1968).CrossRefGoogle Scholar
  33. e.
    J. A. Marshall and R. A. Rüden, J. Org. Chem. 36, 594 (1971).CrossRefGoogle Scholar
  34. f.
    G. A. Kraus and B. Roth, J. Org. Chem. 45, 4825 (1980).CrossRefGoogle Scholar
  35. g.
    T. Sakan and K. Abe, Tetrahedron Lett., 2471 (1968).Google Scholar
  36. h.
    K. J. Clark, G. I. Fray, R. H. Jaeger, and R. Robinson, Tetrahedron 6, 217 (1959).CrossRefGoogle Scholar
  37. i.
    T. Kawabata, P. Grieco, H.-L. Sham, H. Kim, J. Y. Jaw, and S. Tu, J. Org. Chem. 52, 3346 (1987).CrossRefGoogle Scholar
  38. j.
    P. T. Lansbury, J. P. Galbo, and J. P. Springer, Tetrahedron Lett. 29, 147 (1988).CrossRefGoogle Scholar
  39. k.
    J. P. Marino, R. F. de la Pradilla, and E. Laborde, J. Org. Chem. 52, 4898 (1987).CrossRefGoogle Scholar
  40. 1.
    J. A. Marshall and R. A. Rüden, J. Org. Chem. 36, 594 (1971).CrossRefGoogle Scholar
  41. m.
    J. E. Toth, P. R. Hamann, and P. L. Fuchs, J. Org. 53, 4694 (1988).CrossRefGoogle Scholar
  42. 3.
    E. L. Eliel, S. H. Schroeter, T. J. Brett, F. J. Biros, and J.-C. Richer, J. Am. Chem. Soc. 88, 3327 (1966).CrossRefGoogle Scholar
  43. 4.
    E. E. Royals and J. C. Leffingwell, J. Org. Chem. 31, 1927 (1966).CrossRefGoogle Scholar
  44. 5.
    W. W. Epstein and F. W. Sweat, Chem. Rev. 67, 247 (1967).CrossRefGoogle Scholar
  45. 6.
    D. P. Higley and R. W. Murray, J. Am. Chem. Soc. 96, 3330 (1974).CrossRefGoogle Scholar
  46. 7.
    R. Criegee and P. Günther, Chem. Ber. 96, 1564 (1963).CrossRefGoogle Scholar
  47. 8a.
    S. Isoe, S. Katsumura, S. B. Hyeon, and T. Sakan, Tetrahedron Lett., 1089 (1971).Google Scholar
  48. b.
    Y. Ogata, Y. Sawaki, and M. Shiroyama, J. Org. Chem. 42, 4061 (1977).CrossRefGoogle Scholar
  49. c.
    F. G. Bordwell and A. C. Knipe, J. Am. Chem. Soc. 93, 3416 (1971).CrossRefGoogle Scholar
  50. d.
    B. M. Trost, P. R. Bernstein, and P. C. Funfschilling, J. Am. Chem. Soc. 101, 4378 (1979).CrossRefGoogle Scholar
  51. e.
    C. S. Foote, S. Mazur, P. A. Burns, and D. Lerdal, J. Am. Chem. Soc. 95, 586 (1973).CrossRefGoogle Scholar
  52. f.
    J. P. Marino, K. E. Pfitzner, and R. A. Olofson, Tetrahedron 27, 4181 (1971).CrossRefGoogle Scholar
  53. g.
    M. A. Avery, C. Jennings-White, and W. K. M. Chong, Tetrahedron Lett. 28, 4629 (1987).CrossRefGoogle Scholar
  54. 9a.
    P. N. Confalone, C. Pizzolato, D. L. Confalone, and M. R. Uskokovic, J. Am. Chem. Soc. 102, 1954 (1980).CrossRefGoogle Scholar
  55. b.
    S. Danishefsky, R. Zamboni, M. Kahn, and S. J. Etheredge, J. Am. Chem. Soc. 103, 3460 (1981).CrossRefGoogle Scholar
  56. c.
    J. K. Whitesell, R. S. Matthews, M. A. Minton, and A. M. Helbling, J. Am. Chem. Soc. 103, 3468 (1981).CrossRefGoogle Scholar
  57. d.
    F. A. J. Kerdesky, R. J. Ardecky, M. V. Lakshmikanthan, and M. P. Cava, J. Am. Chem. Soc. 103, 1992 (1981).CrossRefGoogle Scholar
  58. e.
    J. K. Whitesell and R. S. Matthews, J. Org. Chem. 43, 1650 (1978).CrossRefGoogle Scholar
  59. f.
    R. Fujimoto, Y. Kishi, and J. F. Blount, J. Am. Chem. Soc. 102, 7154 (1980).CrossRefGoogle Scholar
  60. g.
    S. P. Tanis and K. Nakanishi, J. Am. Chem. Soc. 101, 4398 (1979).CrossRefGoogle Scholar
  61. h.
    R. B. Miller and R. D. Nash, J. Org. Chem. 38, 4424 (1973).CrossRefGoogle Scholar
  62. i.
    R. Grewe and I. Hinrichs, Chem. Ber. 97, 443 (1964).CrossRefGoogle Scholar
  63. j.
    W. Nagata, S. Hirai, K. Kawata, and T. Okumura, J. Am. Chem. Soc. 89, 5046 (1967).CrossRefGoogle Scholar
  64. k.
    W. G. Dauben, M. Lorber, and D. S. Fullerton, J. Org. Chem. 34, 3587 (1969).CrossRefGoogle Scholar
  65. 1.
    E. E. van Tamelen, M. Shamma, A. W. Burgstahler, J. Wolinsky, R. Tamm, and P. E. Aldrich, J. Am. Chem. Soc. 80, 5006 (1958).CrossRefGoogle Scholar
  66. m.
    S. D. Burke, C. W. Murtishaw, J. O. Saunders, J. A. Oplinger, and M. S. Dike, J. Am. Chem. Soc. 106, 4558 (1984).CrossRefGoogle Scholar
  67. n.
    B. M. Trost, P. G. McDougal, and K. J. Haller, J. Am. Chem. Soc. 106, 383 (1984).CrossRefGoogle Scholar
  68. 10.
    W. P. Keaveney, M. G. Berger, and J. J. Pappas, J. Org. Chem. 32, 1537 (1967).CrossRefGoogle Scholar
  69. 11.
    B. M. Trost and K. Hiroi, J. Am. Chem. Soc. 97, 6911 (1975).CrossRefGoogle Scholar
  70. 12.
    E. C. Taylor, C.-S. Chiang, A. McKillop, and J. F. White, J. Am. Chem. Soc. 98, 6750 (1976).CrossRefGoogle Scholar
  71. 13a.
    F. Delay and G. Ohloff, Helv. Chim. Acta 62, 2168 (1979).CrossRefGoogle Scholar
  72. b.
    R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc. 100, 2561 (1978).CrossRefGoogle Scholar
  73. 14a.
    I. Saito, R. Nagata, K. Yubo, and Y. Matsuura, Tetrahedron Lett. 24, 4439 (1983).CrossRefGoogle Scholar
  74. b.
    J. R. Wiseman and S. Y. Lee, J. Org. Chem. 51, 2485 (1986).CrossRefGoogle Scholar
  75. c.
    H. Nishiyama, M. Matsumoto, H. Arai, H. Sakaguchi, and K. Itoh, Tetrahedron Lett. 27, 1599 (1986).CrossRefGoogle Scholar
  76. 15a.
    R. E. Ireland, P. G. M. Wuts, and B. Ernst, J. Am. Chem. Soc. 103, 3205 (1981).CrossRefGoogle Scholar
  77. b.
    R. M. Scarborough, Jr., B. H. Toder, and A. B. Smith III, J. Am. Chem. Soc. 102, 3904 (1980).CrossRefGoogle Scholar
  78. c.
    P. F. Hudrlik, A. M. Hudrlik, G. Nagendrappa, T. Yimenu, E. T. Zellers, and E. Chin, J. Am. Chem. Soc. 102, 6894 (1980).CrossRefGoogle Scholar
  79. d.
    T. Wakamatsu, K. Akasaka, and Y. Ban, J. Org. Chem. 44, 2008 (1979).CrossRefGoogle Scholar
  80. e.
    D. A. Evans, C. E. Sacks, R. A. Whitney, and N. G. Mandel, Tetrahedron Lett. 727 (1978).Google Scholar
  81. f.
    F. Bourelle-Wargnier, M. Vincent, and J. Chuche, J. Org. Chem. 45, 428 (1980).CrossRefGoogle Scholar
  82. g.
    J. A. Zalikowski, K. E. Gilbert, and W. T. Borden, J. Org. Chem. 45, 346 (1980).CrossRefGoogle Scholar
  83. h.
    E. Vogel, W. Klug, and A. Breuer, Org. Synth. 55, 86 (1976).Google Scholar
  84. i.
    L. D. Spicer, M. W. Bullock, M. Garber, W. Groth, J. J. Hand, D. W. Long, J. L. Sawyer, and R. S. Wayne, J. Org. Chem. 33, 1350 (1968).CrossRefGoogle Scholar
  85. j.
    B. E. Rossiter, T. Katsuki, and K. B. Sharpless, J. Am. Chem. Soc. 103, 464 (1981).CrossRefGoogle Scholar
  86. k.
    L. A. Paquette and Y.-K. Han, J. Am. Chem. Soc. 103, 1831 (1981).CrossRefGoogle Scholar
  87. 1.
    T. Wakamatsu, K. Akasaka, and Y. Ban, Tetrahedron Lett., 2755 (1977).Google Scholar
  88. m.
    M. Muelbacher and C. D. Poulter, J. Org. Chem. 53, 1026 (1988).CrossRefGoogle Scholar
  89. n.
    P. T. W. Cheng and S. McLean, Tetrahedron Lett. 29, 3511 (1988).CrossRefGoogle Scholar
  90. o.
    A. B. Smith III and R. E. Richmond, J. Am. Chem. Soc. 105, 575 (1983).CrossRefGoogle Scholar
  91. p.
    R. K. Boeckman, Jr., J. E. Starrett, Jr., D. G. Nickell, and P.-E. Sum, J. Am. Chem. Soc. 108, 15549 (1986).CrossRefGoogle Scholar
  92. 16.
    Y. Gao and K. B. Sharpless, J. Org. Chem. 53, 4081 (1988).CrossRefGoogle Scholar
  93. 17.
    C. W. Jefford, Y. Wang, and G. Bernardinelli, Helv. Chim. Acta 71, 2042 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations