Alkylation of Nucleophilic Carbon. Enolates and Enamines

  • Francis A. Carey
  • Richard J. Sundberg
Part of the Advanced Organic Chemistry book series (AOC)


Carbon-carbon bond formation is the fundamental basis for the construction of the molecular framework in the synthesis of organic molecules. Many carbon-carbon bond-forming processes involve reaction between a nucleophilic carbon and an electrophilic one. The emphasis in this chapter is on enolate ions and enamines, two of the most useful kinds of carbon nucleophiles, and on their reactions with alkylating agents.


Alkyl Halide Enolate Formation Conjugate Addition Enol Ether Thermodynamic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. D. E. Bergbreiter and M. Newcomb, in Asymmetric Synthesis, J. D. Morrison (ed.), Academic Press, New York, 1983, Chapter 9.Google Scholar
  2. D. Caine, in Carbon-Carbon Bond Formation, Vol. 1, R. L. Augustine (ed.), Marcel Dekker, New York, 1979, Chapter 2.Google Scholar
  3. A. G. Cook (ed.), Enamines: Synthesis, Structure and Reactions, Second Edition, Marcel Dekker, New York, 1988.Google Scholar
  4. D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965.Google Scholar
  5. H. O. House, Modern Synthetic Reactions, Second Edition, W. A. Benjamin, Menlo Park, California, 1972, Chapter 9.Google Scholar
  6. J. R. Jones, The Iionization of Carbon Acids, Academic Press, New York, 1973.Google Scholar
  7. J. C. Stowell, Carbanions in Organic Synthesis, Wiley-Interscience, New York, 1979.Google Scholar
  8. 1a.
    W. S. Matthews, J. E. Bares, J. E. Bartmess, F. G. Bordwell, F. J. Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J. McCollum, and N. E. Vanier, J. Am. Chem. Soc. 97, 7006 (1975).CrossRefGoogle Scholar
  9. b.
    H. D. Zook, W. L. Kelly, and I. Y. Posey, J. Org. Chem. 33, 3477 (1968).CrossRefGoogle Scholar
  10. 2a.
    H. O. House and M. J. Urnen, J. Org. Chem. 38, 1000 (1973).CrossRefGoogle Scholar
  11. b.
    W. C. Still and M.-Y. Tsai, J. Am. Chem. Soc. 102, 3654 (1980).CrossRefGoogle Scholar
  12. c.
    H. O. House and B. M. Trost, J. Org. Chem. 30, 1341 (1965).CrossRefGoogle Scholar
  13. d.
    D. Caine and T. L. Smith, Jr., J. Am. Chem. Soc. 102, 7568 (1980).CrossRefGoogle Scholar
  14. e.
    M. F. Semmelhack, S. Tomoda, and K. M. Hurst, J. Am. Chem. Soc. 102, 7567 (1980).CrossRefGoogle Scholar
  15. f.
    R. A. Lee, C. McAndrews, K. M. Patel, and W. Reusch, Tetrahedron Lett, 965 (1973).Google Scholar
  16. g.
    R. H. Frazier, Jr., and R. L. Harlow, J. Org. Chem. 45, 5408 (1980).CrossRefGoogle Scholar
  17. 3a.
    M. Gall and H. O. House, Org. Synth. 52, 39 (1972).Google Scholar
  18. b.
    P. S. Wharton and C. E. Sundin, J. Org. Chem. 33, 4255 (1968).CrossRefGoogle Scholar
  19. c.
    B. W. Rockett and C. R. Hauser, J. Org. Chem. 29, 1394 (1964).CrossRefGoogle Scholar
  20. d.
    J. Meier, Bull. Soc. Chim. Fr., 290 (1962).Google Scholar
  21. e.
    M. E. Jung and C. A. McCombs, Org. Synth. 58, 163 (1978).Google Scholar
  22. f & g.
    H. O. House, T. S. B. Sayer, and C.-C. Yau, J. Org. Chem. 43, 2153 (1978).CrossRefGoogle Scholar
  23. 4a.
    J. M. Harless and S. A. Monti, J. Am. Chem. Soc. 96, 4714 (1974).CrossRefGoogle Scholar
  24. b.
    A. Wissner and J. Meinwald, J. Org. Chem. 38, 1967 (1973).CrossRefGoogle Scholar
  25. c.
    W. J. Gensler and P. H. Solomon, J. Org. Chem. 38, 1726 (1973).CrossRefGoogle Scholar
  26. d.
    H. W. Whitlock, Jr., J. Am. Chem. Soc. 84, 3412 (1962).CrossRefGoogle Scholar
  27. e.
    C. H. Heathcock, R. A. Badger, and J. W. Patterson, Jr., J. Am. Chem. Soc. 89, 4133 (1967).CrossRefGoogle Scholar
  28. f.
    E. J. Corey and D. S. Watt, J. Am. Chem. Soc. 95, 2302 (1973).Google Scholar
  29. 5.
    W. G. Kofron and L. G. Wideman, J. Org. Chem. 37, 555 (1972).CrossRefGoogle Scholar
  30. 6.
    C. R. Hauser, T. M. Harris, and T. G. Ledford, J. Am. Chem. Soc. 81, 4099 (1959).CrossRefGoogle Scholar
  31. 7a.
    N. Campbell and E. Ciganek, J. Chem. Soc, 3834 (1956).Google Scholar
  32. b.
    F. W. Sum and L. Weiler, J. Am. Chem. Soc. 101, 4401 (1979).CrossRefGoogle Scholar
  33. c.
    K. W. Rosemund, H. Herzberg, and H. Schutt, Chem. Ber. 87, 1258 (1954).CrossRefGoogle Scholar
  34. d.
    T. Hudlicky, F. J. Koszyk, T. M. Kutchan, and J. P. Sheth, J. Org. Chem. 45, 5020 (1980).CrossRefGoogle Scholar
  35. e.
    C. R. Hauser and W. R. Dunnavant, Org. Synth. 40, 38 (1960).Google Scholar
  36. f.
    G. Opitz, H. Milderberger, and H. Suhr, Justus Liebigs Ann. Chem., 649, 47 (1961).CrossRefGoogle Scholar
  37. g.
    K. Wiesner, K. K. Chan, and C. Demerson, Tetrahedron Lett., 2893 (1965).Google Scholar
  38. h.
    K. Shimo, S. Wakamatsu, and T. Inoüe, J. Org. Chem. 26, 4868 (1961).CrossRefGoogle Scholar
  39. i.
    T. A. Spencer, K. K. Schmiegel, and K. L. Williamson, J. Am. Chem. Soc. 85, 3785 (1963).CrossRefGoogle Scholar
  40. j.
    G. R. Kieczkowski and R. H. Schlessinger, J. Am. Chem. Soc 100, 1938 (1978).CrossRefGoogle Scholar
  41. 8.
    d. E. D. Bergmann, D. Ginsburg, and R. Pappo, Org. React. 10, 179 (1959).Google Scholar
  42. e.
    L. Mandell, J. U. Piper, and K. P. Singh, J. Org. Chem. 28, 3440 (1963).CrossRefGoogle Scholar
  43. f.
    H. O. House, W. A. Kleschick, and E. J. Zaiko, J. Org. Chem. 43, 3653 (1978).CrossRefGoogle Scholar
  44. g.
    J. E. McMurry and J. Melton, Org. Synth. 56, 36 (1977).Google Scholar
  45. h.
    D. F. Taber and B. P. Gunn, J. Am. Chem. Soc. 101, 3992 (1979).CrossRefGoogle Scholar
  46. i.
    H. Feuer, A. Hirschfeld, and E. D. Bergmann, Tetrahedron 24, 1187 (1968).CrossRefGoogle Scholar
  47. j.
    A. Baradel, R. Longeray, J. Dreux, and J. Doris, Bull. Soc. Chim. Fr., 255 (1970).Google Scholar
  48. k.
    H. H. Baer and K. S. Ong, Can. J. Chem. 46, 2511 (1968).CrossRefGoogle Scholar
  49. 1.
    A. Wettstein, K. Heusler, H. Ueberwasser, and P. Wieland, Helv. Chim. Ada 40, 323 (1957).CrossRefGoogle Scholar
  50. 9a.
    E. Wenkert and D. P. Strike, J. Org. Chem. 27, 1883 (1962).CrossRefGoogle Scholar
  51. b.
    S. J. Etheredge, J. Org. Chem. 31, 1990 (1966).CrossRefGoogle Scholar
  52. c.
    R. Deghenghi and R. Gaudry, Tetrahedron Lett., 489 (1962).Google Scholar
  53. d.
    P. A. Grieco and C. C. Pogonowski, J. Am. Chem. Soc. 95, 3071 (1973).CrossRefGoogle Scholar
  54. e.
    E. M. Kaiser, W. G. Kenyon, and C. R. Hauser, Org. Synth. V, 559 (1973).Google Scholar
  55. f.
    J. Cason, Org. Synth. IV, 630 (1963).Google Scholar
  56. g.
    S. A. Glickman and A. C. Cope, J. Am. Chem. Soc. 67, 1012 (1945).CrossRefGoogle Scholar
  57. h.
    W. Steglich and L. Zechlin, Chem. Ber. III, 3939 (1978).CrossRefGoogle Scholar
  58. i.
    S. F. Brady, M. A. Ilton, and W. S. Johnson, J. Am. Chem. Soc. 90, 2882 (1968).CrossRefGoogle Scholar
  59. j.
    R. P. Hatch, J. Shringarpure, and S. M. Weinreb, J. Org. Chem. 43, 4172 (1978).CrossRefGoogle Scholar
  60. 10.
    S. Masamune, J. Am. Chem. Soc. 86, 288 (1964).CrossRefGoogle Scholar
  61. 11.
    E. J. Corey, M. Ohno, R. B. Mitra, and P. A. Vatakencherry, J. Am. Chem. Soc. 86, 478 (1964).CrossRefGoogle Scholar
  62. 12.
    J. Fried, in Heterocyclic Compounds, R. C. Elderfield (ed.), Vol. 1, Wiley, New York, 1950, p. 358.Google Scholar
  63. 13.
    R. Chapurlat, J. Huet, and J. Druex, Bull. Soc. Chim. Fr., 2446, 2450 (1967).Google Scholar
  64. 14a.
    F. Kuo and P. L. Fuchs, J. Am. Chem. Soc. 109, 1122 (1987).CrossRefGoogle Scholar
  65. b.
    L. A. Paquette, H.-S. Lin, D. T. Belmont, and J. P. Springer, J. Org. Chem. 51, 4807 (1986).CrossRefGoogle Scholar
  66. c.
    R. K. Boeckman, Jr., D. K. Heckenden, and R. L. Chinn, Tetrahedron Lett. 28, 3551 (1987).CrossRefGoogle Scholar
  67. d.
    D. Seebach, J. D. Aebi, M. Gander-Coquot, and R. Naef, Helv. Chim. Acta 70, 1194 (1987).CrossRefGoogle Scholar
  68. e.
    F. E. Ziegler, S. I. Klein, U. K. Pati, and T.-F. Wang, J. Am. Chem. Soc. 107, 2730 (1985).CrossRefGoogle Scholar
  69. f.
    M. E. Kuehne, J. Org. Chem. 35, 171 (1970).CrossRefGoogle Scholar
  70. g.
    D. A. Evans, S. L. Bender, and J. Morris, J. Am. Chem. Soc. 110, 2506 (1988).CrossRefGoogle Scholar
  71. h.
    K. Tomioka, Y.-S. Cho, F. Sato, and K. Koga, J. Org. Chem. 53, 4094 (1988).CrossRefGoogle Scholar
  72. i.
    K. Tomioka, H. Kawasaki, K. Yasuda, and K. Koga, J. Am. Chem. Soc. 110, 3597 (1988).CrossRefGoogle Scholar
  73. 15a.
    T. Kametani, Y. Suzuki, H. Furuyama, and T. Honda, J. Org. Chem. 48, 31 (1983).CrossRefGoogle Scholar
  74. b.
    R. A. Kjonaas and D. D. Patel, Tetrahedron Lett. 25, 5467 (1983).CrossRefGoogle Scholar
  75. c.
    D. F. Taber and R. E. Ruckle, Jr., J. Am. Chem. Soc. 108, 7686 (1986).CrossRefGoogle Scholar
  76. d.
    M. Yamaguchi, M. Tsukamoto, and I. Hirao, Tetrahedron Lett. 26, 1723 (1985).CrossRefGoogle Scholar
  77. e.
    D. L. Snitman, M.-Y. Tsai, D. S. Watt, C. L. Edwards, and P. L. Stotter, J. Org. Chem. 44, 2838 (1979).CrossRefGoogle Scholar
  78. f.
    A. G. Schultz and J. P. Dittami, J. Org. Chem. 48, 2318 (1983).CrossRefGoogle Scholar
  79. 16.
    J. G. Henkel and L. A. Spurlock, J. Am. Chem. Soc. 95, 8339 (1973).CrossRefGoogle Scholar
  80. 17.
    M. S. Newman, V. DeVries, and R. Darlak, J. Org. Chem. 31, 2171 (1966).CrossRefGoogle Scholar
  81. 18.
    P. A. Manis and M. W. Rathke, J. Org. Chem. 45, 4952 (1980).CrossRefGoogle Scholar
  82. 19.
    F. D. Lewis, T.-I. Ho, and R. J. DeVoe, J. Org. Chem. 45, 5283 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations