Carbanions and Other Nucleophilic Carbon Species

  • Francis A. Carey
  • Richard J. Sundberg


This chapter is concerned with carbanions, which are the conjugate bases (in the Brønsted sense) of organic molecules that are formed by deprotonation of a carbon atom. Carbanions may vary widely in stability, depending on the ability of substituent groups to stabilize negative charge. In the absence of substituents that are effective at delocalizing the charge, proton abstraction from a C—H bond is difficult. Carbanions are very useful in synthesis, since formation of new carbon-carbon bonds often requires a nucleophilic carbon species. Extensive study has been devoted to improving methods of generating carbanions and developing an understanding of substituent effects on stability and reactivity.


Carbonyl Compound Lithium Cation Proton Abstraction Relative Acidity Tetrameric Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. E. Buncel, Carbanions: Mechanistic and Isotopic Aspects, Elsevier, Amsterdam, 1975.Google Scholar
  2. E. Buncel and T. Durst (eds.), Comprehensive Carhanion Chemistry, Elsevier, New York, 1981.Google Scholar
  3. D.J.Cram, Fundamentals of Carhanion Chemistry, Academic Press, New York, 1965.Google Scholar
  4. H. F. Ebel, Die Acidität der CH-Säuren, George Thieme Verlag, Stuttgart, 1969.Google Scholar
  5. J. R. Jones, The Ionization of Carbon Acids, Academic Press, New York, 1973.Google Scholar
  6. E. M. Kaiser and D. W. Slocum, in Organic Reactive Intermediates, S. P. McManus (ed.), Academic Press, New York, 1973, Chapter 5.Google Scholar
  7. M. Szwarc, Ions and Ion Pairs in Organic Reactions, Wiley, New York, 1972.Google Scholar
  8. J. Toullec, Adv. Phys. Org. Chem. 18, 1 (1982).CrossRefGoogle Scholar

References for Problems

  1. 2b.
    G. L. Closs and L. E. Closs,J. Am. Chem. Soc. 85, 2022 (1963).CrossRefGoogle Scholar
  2. 2f.
    R. Breslow,J. Am. Chem. Soc. 79, 1762 (1957).CrossRefGoogle Scholar
  3. 2g.
    K. Ogura and G. Tsuchihashi, Tetrahedron Lett., 3151 (1971).Google Scholar
  4. 2h.
    G. L. Closs and R. B. Larabee, Tetrahedron Lett., 287 (1965).Google Scholar
  5. 2i.
    R. B. Woodward and C. Wintner, Tetrahedron Lett., 2689 (1969).Google Scholar
  6. 2j.
    J. A. Zoltewicz, G. M. Kauffman, and C. L. Smith,J. Am. Chem. Soc. 90, 5939 (1968).CrossRefGoogle Scholar
  7. 3a.
    T.-Y. Luh and L. M. Stock,J. Am. Chem. Soc. 96, 3712 (1974).CrossRefGoogle Scholar
  8. 3b.
    H. W. Amburn, K. C. Kaufman, and H. Shecter,J. Am. Chem. Soc. 91, 530 (1969);CrossRefGoogle Scholar
  9. 3ba.
    F. G. Bordwell, J. C. Branca, C. R. Johnson, and N. R. Vanier,J. Org. Chem. 45, 3884 (1980).CrossRefGoogle Scholar
  10. 3c.
    F. G. Bordwell, G. E. Drucker, and H. E. Fried,J. Org. Chem. 46, 632 (1981);CrossRefGoogle Scholar
  11. 3c.
    E. M. Arnett and K. G. Venkatasubramanian,J. Org. Chem. 48, 1569 (1983).CrossRefGoogle Scholar
  12. 3d.
    T. B. Thompson and W. T. Ford,J. Am. Chem. Soc. 101, 5459 (1979).CrossRefGoogle Scholar
  13. 4a.
    G. A. Abad, S. P. Jindal, and T. T. Tidwell,J. Am. Chem. Soc. 95, 6326 (1973).CrossRefGoogle Scholar
  14. 4b.
    A. Nickon and J. L. Lambert,J. Am. Chem. Soc. 84, 4604 (1962).CrossRefGoogle Scholar
  15. 6.
    G. B. Trimitsis and E. M. Van Dam,J. Chem. Soc, Chem. Commun., 610 (1974).Google Scholar
  16. 7.
    A. Streitwieser Jr., W. B. Hollyhead, A. H. Pudjaatmaka, P. H. Owens, T. L. Kruger, P. A. Rubenstein, R. A. MacQuarrie, M. L. Brokaw, W. K. C. Chu, and H. M. Niemeyer,J. Am. Chem. Soc. 93, 5088 (1971).CrossRefGoogle Scholar
  17. 8.
    F. G. Bordwell and F. J. Cornforth,J. Org. Chem. 43, 1763 (1978).CrossRefGoogle Scholar
  18. 9a.
    P. T. Lansbury,J. Am. Chem. Soc. 83, 429 (1961).CrossRefGoogle Scholar
  19. 9b.
    D. W. Griffiths and C. D. Gutsche,J. Am. Chem. Soc. 93, 4788 (1971).CrossRefGoogle Scholar
  20. 9c.
    T. D. Hoffman and D. J. Cram,J. Am. Chem. Soc. 91, 1000 (1969).CrossRefGoogle Scholar
  21. 9d.
    G. Büchi, D. M. Foulkes, M. Kurono, G. F. Mitchell, and R. S. Schneider,J. Am. Chem. Soc. 89, 6745 (1967).CrossRefGoogle Scholar
  22. 9e.
    G. Stork, G. L. Nelson, F. Rouessac, and O. Grigone,J. Am. Chem. Soc. 93, 3091 (1971).CrossRefGoogle Scholar
  23. 10.
    S. Danishefsky and R. K. Singh,J. Am. Chem. Soc. 97, 3239 (1975);CrossRefGoogle Scholar
  24. 10a.
    E. M. Arnett and J. A. Harrelson Jr., J. Am. Chem. Soc. 109, 809 (1987).CrossRefGoogle Scholar
  25. 11.
    A. Streitwieser Jr., R. G. Lawler, and C. Perrin,J. Am. Chem. Soc. 87, 5383 (1965);CrossRefGoogle Scholar
  26. 11a.
    J. E. Hofmann, A. Schriesheim, and R. E. Nichols, Tetrahedron Lett, 1745 (1965).Google Scholar
  27. 12.
    E. J. Stamhuis, W. Mass, and H. Wynberg,J. Org. Chem. 30, 2160 (1965).CrossRefGoogle Scholar
  28. 13.
    B. G. Cox,J. Am. Chem. Soc. 96, 6823 (1974).CrossRefGoogle Scholar
  29. 14.
    E. L. Eliel, A. A. Hartmann, and A. G. Abatjoglou,J. Am. Chem. Soc 96, 1807 (1974);CrossRefGoogle Scholar
  30. 14a.
    J.-M. Lehn and G. Wipff,J. Am. Chem. Soc. 98, 7498 (1976).CrossRefGoogle Scholar
  31. 15a.
    N. S. Mills, J. Shapiro, and M. Hollingsworth,J. Am. Chem. Soc. 103, 1263 (1981).CrossRefGoogle Scholar
  32. 15b.
    N. S. Mills,J. Am. Chem. Soc. 104, 5689 (1982).CrossRefGoogle Scholar
  33. 16.
    R. B. Woodward and G. Small Jr.,J. Am. Chem. Soc. 72, 1297 (1950).CrossRefGoogle Scholar
  34. 17a.
    E. J. Corey, T. H. Hopie, and W. A. Wozniak,J. Am. Chem. Soc. 77, 5415 (1955).CrossRefGoogle Scholar
  35. 17b.
    E. W. Garbisch Jr.,J. Org. Chem. 30, 2109 (1965).CrossRefGoogle Scholar
  36. 17c.
    F. Caujolle and D. Q. Quan, C. R. Acad. Sci., C 265, 269 (1967).Google Scholar
  37. 17d.
    C. W. P. Crowne, R. M. Evans, G. F. H. Green, and A. G. Long,J. Chem. Soc, 4351 (1956).Google Scholar
  38. 17e.
    N. C. Deno and R. Fishbein,J. Am. Chem. Soc. 95, 7445 (1973).CrossRefGoogle Scholar
  39. 18a.
    P. L. Stotter and K. A. Hill,J. Am. Chem. Soc. 96, 6524 (1974).CrossRefGoogle Scholar
  40. 18b.
    B. J. L. Huff, F. N. Tuller, and D. Caine,J. Org. Chem. 34, 3070 (1969).CrossRefGoogle Scholar
  41. 18c.
    H. O. House and T. M. Bare,J. Org. Chem. 33, 943 (1968).CrossRefGoogle Scholar
  42. 18d.
    R. S. Matthews, P. K. Hyer, and E. A. Folkers,J. Chem. Soc, Chem. Commun., 38 (1970).Google Scholar
  43. 18e.
    C. H. Heathcock, R. A. Badger, and J. W. Patterson Jr.,J. Am. Chem. Soc. 89, 4133 (1967).CrossRefGoogle Scholar
  44. 18f.
    J. E. McMurry,J. Am. Chem. Soc. 90, 6821 (1968).CrossRefGoogle Scholar
  45. 19.
    M. S. Newman, V. DeVries, and R. Darlak,J. Org. Chem. 31, 2171 (1966).CrossRefGoogle Scholar
  46. 20.
    H. M. Walborsky and L. M. Turner,J. Am. Chem. Soc. 94, 2273 (1972).CrossRefGoogle Scholar
  47. 21.
    Y. Jasor, M. Gaudry, and A. Marquet, Tetrahedron Lett., 53 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations