Skip to main content

Reactions of Dioxygen and Its Reduced Forms with Heme Proteins and Model Porphyrin Complexes

  • Chapter
Active Oxygen in Biochemistry

Abstract

Among the many kinds of biological complexes of transition metals that interact with dioxygen or its variously reduced forms, heme proteins are the most common and the most studied. With only a few exceptions, heme proteins are globular proteins which sequester and spatially isolate the active porphyrin-iron complex, protoheme (the iron(II) form) or protohemin (the iron(III) form; Figure 3–1). The iron porphyrin is tightly bound to the protein through numerous hydrophobic interactions and by a single coordinate bond between a base from a so-called proximal amino acid residue, such as an imidazole nitrogen from histidine or phenolate from tyrosine, and the iron atom. This is shown in Figure 3–2, where B represents the proximal base. Dioxygen or other small molecules bind to the opposite (distal) side of the porphyrin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasa, R., Vanngard, T., and Dunford, H. B. (1975) Epr Studies on Compound I of Horseradish Peroxidase. Biochim. Biophys. Acta, 391, 259–264.

    Article  Google Scholar 

  • Adam, W., Curci, R., and Edwards, J. O. (1989) Dioxiranes: A New Class of Powerful Oxidants. Acc. Chem. Res., 22, 205–211.

    Article  Google Scholar 

  • Adediran, S. A., and, Dunford, H. B. (1983) Structure of Horseradish Peroxidase Compound I. Kinetic Evidence for the Incorporation of One Oxygen Atom from the Oxidizing Substrate into the Enzyme. Eur. J. Biochem., 132, 147–150.

    Article  Google Scholar 

  • Alberding, N., Austin, R. H., Chan, S. S., Eisenstein, L., Frauenfelder, H., Good, D., Kaufmann, K., Marden, M., Nordlund, T. M., Reinisch, L., Reynolds, A. H., Sorensen, L. B., Wagner, G. C., and Yue, K. T. (1978a) Fast Reactions in Carbon Monoxide Binding to Heme Proteins. Biophys. J., 24, 319–334.

    Article  Google Scholar 

  • Alberding, N., Chan, S. S., Eisenstein, L., Frauenfelder, H., Good, D., Gunsalus, I. C., Nordlund, T. M., Perutz, M. F., Reynolds, A. H., and Sorensen, L. B. (1978b) Binding of Carbon Monoxide to Isolated Hemoglobin Chains. Biochemistry, 17, 43–51.

    Article  Google Scholar 

  • Almog, J., Baldwin, J. E., Dyer, R. L., Huff, J., and Wilkerson, C. J. (1974) Reversible Binding of Dioxygen to Mesoporphyrin IX Derivatives at Low Temperatures. J. Am. Chem. Soc., 96, 5600–5601.

    Article  Google Scholar 

  • Almog, J., Baldwin, J. E., Dyer, R. L., and Peters, M. (1975a) Condensation of Tetraaldehydes with Pyrrole. Direct Synthesis of Capped Porphyrins. J. Am. Chem. Soc., 97, 226–227.

    Article  Google Scholar 

  • Almog, J., Baldwin, J. E., and Huff, J. (1975b) Reversible Oxygenation and Autoxidation of a Capped Porphyrin Iron(II) Complex. J. Am. Chem. Soc., 97, 227–228.

    Article  Google Scholar 

  • Alpert, B., El Mohsni, S., Lindqvist, L., and Tfibel, F. (1979) Transient Effects in the Nanosecond Laser Photolysis of Carboxyhemoglobin: “Cage” Recombination and Spectral Evolution of the Protein. Chem. Phys. Lett., 64, 11–16.

    Article  Google Scholar 

  • Altman, J., Lipka, J. J., Kuntz, I., and Waskell, L. (1989) Identification by Proton Nuclear Magnetic Resonance of the Histidines in Cytochrome b5 Modified by Diethyl Pyrocarbonate. Biochemistry, 28, 7516–7523.

    Article  Google Scholar 

  • Amiconi, G., Antonini, E., Brunori, M., Tormaneck, H., and Huber, R. (1972) Functional Properties of Native and Reconstituted Hemoglobins from Chironomus thummi thummi. Eur. J. Biochem., 31, 52–58.

    Article  Google Scholar 

  • Amundsen, A. R., and Vaska, L. (1975) Oxygenation of meso-Tetrakis (2,4,6-alkoxyphenyl)-porphinato Complexes of Iron(II): Some Unusual Observations. Inorg. Chim. Acta, 14, L49–L51.

    Article  Google Scholar 

  • Anderson, D. L., Weschler, C. J., and Basolo, F. (1974) Reversible Reaction of Simple Ferrous Porphyrins with Molecular Oxygen at Low Temperatures. J. Am. Chem. Soc., 96, 5599–5600.

    Article  Google Scholar 

  • Anfinrud, P. A., Han, C., and Hochstrasser, R. M. (1989) Direct Observations of Ligand Dynamics in Hemoglobin by Subpicosecond Infrared Spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 86, 8387–8391.

    Article  Google Scholar 

  • Ansari, A., Diiorio, E. E., Dlott, D. D., Frauenfelder, H., Iben, I. E. T., Langer, P., Roder, H., Sauke, T. B., and Shyamsunder, E. (1986) Ligand Binding to Heme Proteins: Relevance of Low-temperature Data. Biochemistry, 25, 3139–3146.

    Article  Google Scholar 

  • Antonini, E., and Brunori, M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland, Amsterdam.

    Google Scholar 

  • Antonini, E., and Gibson, Q. H. (1960) Some Observations on the Kinetics of the Reactions with Gases of Natural and Reconstituted Haemoglobins. Biochem. J., 76, 534–538.

    Google Scholar 

  • Anzenbacher, P., Dawson, J. H., and Kitagawa, T. (1989) Towards a Unified Concept of Oxygen Activation by Heme Enzymes: The Role of the Proximal Ligand. J. Mol. Struct., 214, 149–158.

    Article  Google Scholar 

  • Arasasingham, R. D., Balch, A. L., and Latos-Grazynski, L. (1987) Identification of Intermediates and Products in the Reaction of Porphyrin Iron(III) Alkyl Complexes with Dioxygen. J. Am. Chem. Soc., 109, 5846–5847.

    Article  Google Scholar 

  • Artaud, I., Gregoire, N., and Mansuy, D. (1989) Suicidal Inactivation of Iron-porphyrins during Trans Hex-2-ene Oxidation: First Isolation and Characterization of N-alkyl-porphyrins with a N-CHR-CHR’Oh structure. New J. Chem., 13, 581–586.

    Google Scholar 

  • Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., and Gunsalus, I. C. (1975) Dynamics of Ligand Binding to Myoglobin. Biochemistry, 14, 5355–5373.

    Article  Google Scholar 

  • Babcock, G. T., Varotsis, C., and Zhang, Y. (1992) Oxygen Activation in Cytochrome Oxidase and in Other Heme Proteins. Biochim. Biophys. Acta, 1101, 192–194.

    Google Scholar 

  • Babcock, G. T., and Wikström, M. (1992) O2 Activation and the Conservation of Energy in Cell Respiration. Nature, 356, 301–309.

    Article  Google Scholar 

  • Balasubramanian, P. N., Lindsay Smith, J. R., Davies, M. J., Kaaret, T. W., and Bruice, T. C. (1989) Dynamics of Reaction of (meso-Tetrakis(2,6-dimethy1–3-sulfonatophenyl)porphinato)-iron(III) Hydrate with tert-Butyl Hydroperoxide in Aqueous Solution. 2. Establishment of a Mechanism That Involves Homolytic O-O Bond Breaking and One-electron Oxidation of the Iron(III) Porphyrin. J. Am. Chem. Soc., 111, 1477–1483.

    Article  Google Scholar 

  • Balasubramanian, P. N., Schmidt, E. S., and Bruice, T. C. (1987) Catalase Modeling. 2. Dynamics of Reaction of a Water-soluble and Non µ-Oxo Dimer Forming Manganese(III) Porphyrin with Hydrogen Peroxide. J. Am. Chem. Soc., 109, 7865–7873.

    Article  Google Scholar 

  • Balch, A. L. Private communication.

    Google Scholar 

  • Balch, A. L., Chan, Y.-W., Cheng, R.-J., La Mar, G. N., Latos-Grazynski, L., and Renner, M. W. (1984) Oxygenation Patterns for Iron(II) Porphyrins. Peroxo and Ferryl (FeIVO) Intermediates Detected by 1H Nuclear Magnetic Resonance Spectroscopy During the Oxygenation of (Tetramesitylporphyrin)iron(II). J. Am. Chem. Soc., 106, 7779–7785.

    Article  Google Scholar 

  • Balch, A. L., Cornman, C. R., Latos-Grazynski, L., and Renner, M. W. (1992) Highly Oxidized Iron Complexes of N-methyltetra-p-tolylporphyrin. J. Am. Chem. Soc., 114, 2230–2237.

    Article  Google Scholar 

  • Balch, A. L., Hart, R. L., Latos-Grazynski, L., and Traylor, T. G. (1990) Nuclear Magnetic Resonance Studies of the Formation of Tertiary Alkyl Complexes of Iron(III) Porphyrins and Their Reactions with Dioxygen. J. Am. Chem. Soc., 112, 7382–7388.

    Article  Google Scholar 

  • Balch, A. L., Latos-Grazynski, L., and Renner, M. W. (1985) Oxidation of Red Ferryl [FeIVO)2+] Porphyrin Complexes to Green Ferryl [FeIV(O)2+] porphyin Radical Complexes. J. Am. Chem. Soc., 107, 2983–2985.

    Article  Google Scholar 

  • Baldwin, J. E., Cameron, J. H., Crossley, M. J., Dagley, I. J., Hall, S. R., and Klose, T. (1984) Synthesis of Iron(II) C2-capped Strapped Porphyrin Complexes and Their Reaction with Dioxygen. J. Chem. Soc., Dalton Trans., 1739–1746.

    Google Scholar 

  • Baldwin, J. E., Crossley, M. J., Klose, T., O’Rear, E. A., III, and Peters, M. K. (1982) Syntheses and Oxygenation of Iron(II) Strapped Porphyrin Complexes. Tetrahedron, 38, 27–39.

    Article  Google Scholar 

  • Baldwin, J. E., Klose, T., and Peters, M. (1976) Syntheses of “Strapped” Porphyrins and the Oxygenation of Their Iron(II) Complexes. J. Chem. Soc., Chem. Commun., 881–883.

    Google Scholar 

  • Baldwin, J. M. (1975) Structure and Function of Haemoglobin. Prog. Biophys. Molec. Biol., 29, 225–320.

    Article  Google Scholar 

  • Bandyopadhyay, D., Magde, D., Traylor, T. G., and Sharma, V. S. (1992) Quaternary Structure and Geminate Recombination in Hemoglobin: Flow-flash Studies on αCO 2β2 and α2βCO 2. Biophys. J., 673–681.

    Google Scholar 

  • Bandyopadhyay, D., Walda, K. N., Magde, D., Traylor, T. G., and Sharma, V. S. (1990) Quaternary Structure and the Geminate Recombination of Carp Hemoglobin with Methylisocyanide. Biochem. Biophys. Res. Commun., 171, 306–312.

    Article  Google Scholar 

  • Bartlett, P. D., and Hiatt, R. (1958) A Series of Tertiary Butyl Peresters Showing Concerted Decomposition. J. Am. Chem. Soc., 80, 1398–1405.

    Article  Google Scholar 

  • Basolo, F., Hoffman, B. M., and Ibers, J. A. (1975) Synthetic Oxygen Carriers of Biological Interest. Acc. Chem. Res., 8, 384–392.

    Article  Google Scholar 

  • Battersby, A. R., and Hamilton, A. D. (1980) Synthesis of a Doubly-bridged Oxygen Carrier Which Shows Reduced Affinity for Carbon Monoxide. J. Chem. Soc., Chem. Commun., 117–119.

    Google Scholar 

  • Battersby, A. R., Hartley, S. G., and Turnbull, M. G., (1978) Synthetic Routes to Singly and Doubly Bridged Porphyrins. Tetrahedron Lett. 3169–3172.

    Google Scholar 

  • Battioni, P., Renaud, J. P., Bartoli, J. F., Reina-Artiles, M., Fort, M., and Mansuy, D. (1988) Monooxygenase-like Oxidation of Hydrocarbons by H2O2 Catalyzed by Manganese Porphyrins and Imidazole: Selection of the Best Catalytic System and Nature of the Active Oxygen Species. J. Am. Chem. Soc., 110, 8462–8470.

    Article  Google Scholar 

  • Beer, R. H., Tolman, W. B., Bott, S. G., and Lippard, S. J. (1991) Effects of a Bridging Dicarboxylate Ligand on the Synthesis and Physical Properties of (µ-Oxo)bis(µ-carboxylato)diiron(III) Complexes. Inorg. Chem., 30, 2082–2092 .

    Article  Google Scholar 

  • Bennett, L. E. (1973) Metalloprotein Redox Reactions, in Prog. Inorg. Chem., (S. J. Lippard, Ed.), John Wiley & Sons, New York, 18, pp. 1–176.

    Chapter  Google Scholar 

  • Berinstain, A. B., English, A. M., Hill, B. C., and Sharma, D. (1990) Picosecond Flash Photolysis of Carboxy Horseradish Peroxidase: Rapid Geminate Recombination in the Presence of Benzohydroxamic Acid. J. Am. Chem. Soc., 112, 9649–9651.

    Article  Google Scholar 

  • Bill, E., Ding, X. Q., Bominaar, E. L., Trautwein, A. X., Winkler, H., Mandon, D., Weiss, R., Gold, A., and Jayaraj, K. (1990) Evidence for Variable Metal-radical Spin Coupling in Oxoferryl-Porphyrin Cation Radical Complexes. Eur. J. Biochem., 188, 665–672.

    Article  Google Scholar 

  • Bonaventura, J., and Wood, S. C. (1980) Respiratory Pigments: Overview. Am. Zool., 20, 5–6.

    Google Scholar 

  • Boso, B., Lang, G., Mcmurry, T. J., and Groves, J. T. (1983) Mössbauer Effect Study of Tight Spin Coupling in Oxidized Chloro-5,10,15,20-tetra(mesity)porphyrinato Iron(III). J. Chem. Phys., 79, 1122–1126.

    Article  Google Scholar 

  • Bosshard, H. R., Anni, H., and Yonetani, T. (1991) Yeast Cytochrome C, Peroxidase, in Peroxidases in Chemistry and Biology (J. Everse, K. E. Everse, and M. B. Grisham, Eds.), CRC, Boca Raton, FL, 2, pp, 51–84.

    Google Scholar 

  • Brinigar, W. S., Chang, C. K., Geibel, J., and Traylor, T. G. (1974) Solvent Effects on Reversible Formation and Oxidative Stability of Heme-Oxygen Complexes. J. Am. Chem. Soc., 96, 5597–5599.

    Article  Google Scholar 

  • Bruice, T. C. (1986) Chemical Studies Pertaining to the Chemistry of Cytochrome P-450 and the Peroxidases. Ann. N.Y. Acad. Sci., 471, 83–98.

    Article  Google Scholar 

  • Bruice, T. C. (1991) Reactions of Hydroperoxides with Metallotetraphenylporphyrins in Aqueous Solutions. Acc. Chem. Res., 24, 243–249.

    Article  Google Scholar 

  • Bruice, T. C., Balasubramanian, P. N., Lee, R. W., and Lindsay Smith, J. R. (1988) The Mechanism of Hydroperoxide O-O Bond Scission on Reaction of Hydroperoxides with Iron(III) Porphyrins. J. Am. Chem. Soc., 110, 7890–7892.

    Article  Google Scholar 

  • Bruice, T. C., Zipplies, M. F., and Lee, W. A. (1986) The pH Dependence of the Mechanism of Reaction of Hydrogen Peroxide with a Nonaggregating, Non-µ-oxo Dimer-forming Iron(III) Porphyrin in Water. Proc. Natl. Acad. Sci. U. S.A., 83, 4646–4649.

    Article  Google Scholar 

  • Brunori, M., and Chance, B. (Eds.) (1988) Cytochrome Oxidase: Structure, Function and Physiopathology. Ann. Ny Acad. Sci., 550, 1–382.

    Google Scholar 

  • Budge, J. R., Ellis, P. E., Jr., Jones, R. D., Linard, J. E., Basolo, F., Baldwin, J. E., and Dyer, R. L. (1979) The Iron(II) “Homologous Cap” Porphyrin. A Novel Dioxygen Binder. J. Am. Chem. Soc., 101, 4760–4762.

    Article  Google Scholar 

  • Caldin, E. F., and Hasinoff, B. B. (1975) Diffusion-controlled Kinetics in the Reaction of Ferroprotoporphyrin IX with Carbon Monoxide. J. Chem. Soc., Faraday Trans. I, 71, 515–527.

    Article  Google Scholar 

  • Campestrini, S., Robert, A., and Meunier, B. (1991) Ozone Epoxidation of Olefins Catalyzed by Highly Robust Manganese and Iron Porphyrin Complexes. J. Org. Chem., 56, 3725–3727.

    Article  Google Scholar 

  • Capaldi, R. A. (1990a) Structure and Function of Cytochrome c Oxidase. Ann. Rev. Biochem., 59, 569–596.

    Article  Google Scholar 

  • Capaldi, R. A. (1990b) Structure and Assembly of Cytochrome c Oxidase. Arch. Biochem. Biophys., 280, 252–262.

    Article  Google Scholar 

  • Caughey, W. S. (1970) Carbon Monoxide Bonding in Hemeproteins. Ann. N.Y. Acad. Sci., 174, 148–153.

    Article  Google Scholar 

  • Chan, S. I., and Li, P. M. (1990) Cytochrome c Oxidase: Understanding Nature’s Design of a Proton Pump. Biochemistry, 29, 1–12.

    Article  Google Scholar 

  • Chance, B. (1951) Enzyme Substrate Compounds: Mechanism of Action of Hydroperoxidases, in The Enzymes, 2 (Part 1) Academic Press, New York pp 428–434.

    Google Scholar 

  • Chance, B. (1952) The Transition from the Primary to the Secondary Peroxidase-Peroxide Complex. Arch. Biochem. Biophys., 37, 235–237.

    Article  Google Scholar 

  • Chance, M. R., Courtney, S. H., Chavez, M. D., Ondrias, M. R., and Friedman, J. M. (1990) O2 and CO Reactions with Heme Proteins: Quantum Yields and Geminate Recombination on Picosecond Time Scales. Biochemistry, 29, 5537–5545.

    Article  Google Scholar 

  • Chang, C. K., and Abdalmuhdi, I. (1984) Biphenylenediporphyrin: Two Cofacially Ordered Porphyrins with Biphenylene Bridge. Angew. Chem., 96, 154–155.

    Article  Google Scholar 

  • Chang, C. K., and Ebina, F. (1981) NIH Shift in Haemin-iodosylbenzenemediated Hydroxylations. J. Chem. Soc., Chem. Commun., 778–779.

    Google Scholar 

  • Chang, C. K., Kuo, M.-S., and Wang, C.-B. (1977a) Stacked Doublemacrocyclic Ligands II. Synthesis of Cofacial Diporphyrins (1–2). J. Heterocyclic Chem., 14, 943–945.

    Article  Google Scholar 

  • Chang, C. K., Powell, D., and Traylor, T. G. (1977b) Kinetics and Mechanisms of Oxidation of Hemoprotein Model Compounds. Croatia Chem. Acta, 49, 295–307.

    Google Scholar 

  • Chang, C. K., and Traylor, T. G. (unpublished).

    Google Scholar 

  • Chang, C. K., and Traylor, T. G. (1973a) Solution Behavior of a Synthetic Myoglobin Active Site. J. Am. Chem. Soc., 95, 5810–5811.

    Article  Google Scholar 

  • Chang, C. K., and Traylor, T. G. (1973b) Synthesis of the Myoglobin Active Site. Proc. Natl. Acad. Sci. U.S.A., 70, 2647–2650.

    Article  Google Scholar 

  • Chang, C. K., and Traylor, T. G. (1975a) Reversible Oxygenation of Protoheme-Imidazole Complex in Aqueous Solution. Biochem. Biophys. Res. Commun., 62, 729–735.

    Article  Google Scholar 

  • Chang, C. K., and Traylor, T. G. (1975b) Kinetics of Oxygen and Carbon Monoxide Binding to Synthetic Analogs of the Myoglobin and Hemoglobin Active Sites. Proc. Natl. Acad. Sci, U. S.A., 72, 1166–1170.

    Article  Google Scholar 

  • Chang, C. K., and Wang, C.-B. (1982) Binuclear Porphyrin Complexes: Heme Models for Oxygen Binding and Reduction, in Electron Transport and Oxygen Utilization (C. Ho, Ed.), Elsevier North-Holland, Amsterdam, pp. 237–243.

    Google Scholar 

  • Chang, C. K., Ward, B., Young, R., and Kondylis, M. P. (1988) Fine Tuning of Heme Reactivity: Hydrogen-bonding and Dipole Interactions Affecting Ligand Binding to Hemoproteins. J. Macromolecular Sci.-Chem., A25(10 & 11), 1307–1326.

    Article  Google Scholar 

  • Chin, D.-H., Balch, A. L., and La Mar, G. N. (1980a) Formation of Porphyrin Ferryl (FeO2+) Complexes Through the Addition of Nitrogen Bases to Peroxo-bridged Iron(III) Porphyrins. J. Am. Chem. Soc., 102, 1446–1448 .

    Article  Google Scholar 

  • Chin, D.-H., Del Gaudio, J., La Mar, G. N., and Balch, A. L. (1977) Detection and Characterization of the Long-postulated Fe-OO-Fe Intermediate in the Autoxidation of Ferrous Porphyrins. J. Am. Chem. Soc., 99, 5486–5488 .

    Article  Google Scholar 

  • Chin, D.-H., La Mar, G. N., and Balch, A. L. (1980b) On the Mechanism of Autoxidation of Iron(II) Porphyrins. Detection of a Peroxo-bridged Iron(III) Porphyrin Dimer and the Mechanism of Its Thermal Decomposition to the Oxo-bridged Iron(III) Porphyrin Dimer. J. Am. Chem. Soc., 102, 4344–4350 .

    Article  Google Scholar 

  • Chin, D.-H., La Mar, G. N., and Balch, A. L. (1980c) Role of Ferryl (FeO2+) Complexes in Oxygen Atom Transfer Reactions. Mechanism of Iron(II) Porphyrin Catalyzed Oxygenation of Triphenylphosphine. J. Am. Chem. Soc., 102, 5945–5947.

    Article  Google Scholar 

  • Chu, M. M. L., Castro, C. E., and Hathaway, G. M. (1978) Oxidation of Low-spin Iron(II) Porphyrins by Molecular Oxygen. An Outer Sphere Mechanism. Biochemistry, 17, 481–486.

    Article  Google Scholar 

  • Collman, J. P. (1977) Synthetic Models for the Oxygen-binding Hemoproteins. Acc. Chem. Res., 10, 265–272.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Collins, T. J., Iverson, B. L., Lang, G., Pettman, R. B., Sessler, J. L., and Walters, M. A. (1983a) Synthesis and Characterization of the “Pocket” Porphyrins. J. Am. Chem. Soc., 105, 3038–3052.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Iverson, B. L., Sessler, J. L., Morris, R. M., and Gibson, Q. H. (1983b) O2 and CO Binding to Iron(II) Porphyrins: A Comparison of the “Picket Fence” and “Pocket” Porphyrins. J. Am. Chem. Soc., 105, 3052–3064.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Collins, T. J., Iverson, B. L., and Sessler, J. L. (1981) The “Pocket” Porphyrin: A Hemoprotein Model with Lowered CO Affinity. J. Am. Chem. Soc., 103, 2450–2452.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., and Doxsee, K. M. (1979) Carbon Monoxide Binding to Iron Porphyrins. Proc. Natl. Acad. Sci. U.S.A., 76, 6035–6039.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Doxsee, K. M., Halbert, T. R., Bunnenberg, E., Linder, R. E., Lamar, G. N., Del Gaudio, J., Lang, G., and Spartalian, K. (1980) Synthesis and Characterization of “Tailed Picket Fence” Porphyrins. J. Am. Chem. Soc., 102, 4182–4192.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Doxsee, K. M., Halbert, T. R., and Suslick, K. S. (1978) Model Compounds for the T State of Hemoglobin. Proc. Natl. Acad. Sci. U.S.A., 75, 564–568.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Halbert, T. R., and Suslick, K. S. (1976) Nature of O2 and CO Binding to metalloporphyrins and Heme Proteins. Proc. Natl. Acad. Sci. U.S.A., 73, 3333–3337.

    Article  Google Scholar 

  • Collman, J. P., Elliott, C. M., Halbert, T. R., and Tovrog, B. S. (1977) Synthesis and Characterization of “Face-to-face” Porphyrins. Proc. Natl. Acad. Sci. U.S.A., 74, 18–22.

    Article  Google Scholar 

  • Collman, J. P., Gagné, R. R., Halbert, T. R., Marchon, J. C., and Reed, C. A. (1973) Reversible Oxygen Adduct Formation in Ferrous Complexes Derived from a Picket Fence Porphyrin. Model for Oxymyoglobin. J. Am. Chem. Soc., 95, 7868–7870.

    Article  Google Scholar 

  • Collman, J. P., Gagné, R. R., Reed, C. A., Halbert, T. R., Lang, G., and Robinson, W. T. (1975) “Picket Fence Porphyrins.” Synthetic Models for Oxygen Binding Hemoproteins. J. Am. Chem. Soc., 97, 1427–1439.

    Article  Google Scholar 

  • Collman, J. P., Hampton, P. D., and Brauman, J. I. (1986a) Stereochemical and Mechanistic Studies of the “Suicide” Event in Biomimetic P-450 Olefin Epoxidation. J. Am. Chem. Soc., 108, 7861–7862.

    Article  Google Scholar 

  • Collman, J. P., Hampton, P. D., and Brauman, J. I. (1990a) Suicide Inactivation of Cytochrome P-450 Model Compounds by Terminal Olefins. 1. A Mechanistic Study of Heme N-Alkylation and Epoxidation. J. Am. Chem. Soc., 112, 2977–2986.

    Article  Google Scholar 

  • Collman, J. P., Hampton, P. D., and Brauman, J. I. (1990b) Suicide Inactivation of Cytochrome P-450 Model Compounds by Terminal Olefins. 2. Steric and Electronic Effects in Heme N-Alkylation and Epoxidation. J. Am. Chem. Soc., 112, 2986–2998.

    Article  Google Scholar 

  • Collman, J. P., Kodadek, T., and Brauman, J. I. (1986b) Oxygenation of Styrene by Cytochrome P-450 Model Systems: A Mechanistic Study. J. Am. Chem. Soc., 108, 2588–2594.

    Article  Google Scholar 

  • Collman, J. P., Kodadek, T., Raybuck, S. A., Brauman, J. I., and Papazian, L. M. (1985) Mechanism of Oxygen Atom Transfer from High Valent Porphyrins to Olefins: Implications to the Biological Epoxidation of Olefins by Cytochrome P-450. J. Am. Chem. Soc., 107, 4343–4345.

    Article  Google Scholar 

  • Cooper, C. E. (1990) The Steady-state Kinetics of Cytochrome-c Oxidation by Cytochrome Oxidase. Biochim. Biophys. Acta, 1017, 187–203.

    Article  Google Scholar 

  • Cusanovich, M. A., Meyer, T. E., and Tollin, G. (1988) c-Type Cytochromes: Oxidation-reduction Properties. Advances in Inorganic Biochemistry (G. L. Eichhorn and L. G. Marzilli, Eds.), Elsevier, New York 7, pp. 37–91.

    Google Scholar 

  • David, S., Dolphin, D., and James, B. R. (1986) Discriminatory Binding of Carbon Monoxide Versus Dioxygen within Heme Proteins and Model Hemes, in Frontiers in Bioinorganic Chemistry (A. Xavier, Ed.) VCH Publishers, New York, pp. 163–182.

    Google Scholar 

  • David, S., James, B. R., Dolphin, D., Traylor, T. G., and Lopez, M. A. (1994) Dioxygen and Carbon Monoxide Binding to Apolar Cyclophane Hemes: Durene-capped Hemes. J. Am. Chem. Soc., 116, 6–14.

    Article  Google Scholar 

  • Davies, D. M., and Lawther, J. M. (1989) Kinetics and Mechanism of Electron Transfer from Dithionite to Microsomal Cytochrome b5 and to Forms of the Protein Associated with Charged and Neutral Vesicles. Biochem. J., 258, 375–380.

    Google Scholar 

  • Deisseroth, A., and Dounce, A. L. (1970) Catalase: Physical and Chemical Properties, Mechanism of Catalysis, and Physiological Role. Physiol. Rev., 50, 319–375 .

    Google Scholar 

  • De Young, A., Pennelly, R. R., Tan-Wilson, A. L., and Noble, R. W. (1976) Kinetic Studies on the Binding Affinity of Human Hemoglobin for the 4th Carbon Monoxide Molecule, L4. J. Biol. Chem., 251, 6692–6698.

    Google Scholar 

  • Dicken, C. M., Woon, T. C., and Bruice, T. C. (1986) Kinetics and Mechanisms of Oxygen Transfer in the Reaction of p-Cyano-N,N-dimethylaniline N-oxide with Metalloporphyrin Salts. 3. Catalysis by [meso-Tetrakis(2,6-dichlorophenyl)porphinato]iron(III) Chloride. J. Am. Chem. Soc., 108, 1636–1643.

    Article  Google Scholar 

  • Dickerson, R. E. (1972) The Structure and History of an Ancient Protein. Sci. Am., 226, 58–72 .

    Article  Google Scholar 

  • Dickerson, R. E. (1980) Cytochrome c and the Evolution of Energy Metabolism. Sci. Am., 242, 137–153.

    Article  Google Scholar 

  • Diekmann, H., Chang, C. K., and Traylor, T. G. (1971) Cyclophane Porphyrin. J. Am. Chem. Soc., 93, 4068–4070.

    Article  Google Scholar 

  • Dix, T. A., Fontana, R., Panthani, A., and Marnett, L. J. (1985) Hematincatalyzed Epoxidation of 7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene by Polyunsaturated Fatty Acid Hydroperoxides. J. Biol. Chem., 260, 5358–5365.

    Google Scholar 

  • Dix, T. A., Marnett, L. J. (1981) Free-radical Epoxidation of 7,8-Dihydroxy7,8-dihydrobenzo-[a]pyrene by Hematin and Polyunsaturated Fatty Acid Hydroperoxides. J. Am. Chem. Soc., 103, 6744–6746.

    Article  Google Scholar 

  • Dix, T. A., and Marnett, L. J. (1983) HematiN-catalyzed Rearrangement of Hydroperoxylinoleic Acid to Epoxy Alcohols Via an Oxygen Rebound. J. Am. Chem. Soc., 105, 7001–7002.

    Article  Google Scholar 

  • Dix, T. A., and Marnett, L. J. (1985) Conversion of Linoleic Acid Hydroperoxide to Hydroxy, Keto, Epoxyhydroxy, and Trihydroxy Fatty Acids by Hematin. J. Biol. Chem., 260, 5351–5357.

    Google Scholar 

  • Dlott, D. D., Frauenfelder, H., Langer, P., Roder, H., and Diiorio, E. E. (1983) Nanosecond Flash Photolysis Study of Carbon Monoxide Binding to the β Chain of Hemoglobin Zurich [β63(E7)His&#x2192Arg]. Proc. Natl. Acad. Sci.U.S.A., 80, 6239–6243.

    Article  Google Scholar 

  • Dolphin, D., Forman, A., Borg, D. C., Fajer, J., and Felton, R. H. (1971) Compounds I of Catalase and Horseradish Peroxidase: π-Cation Radicals. Proc. Natl. Acad. Sci. U.S.A., 68, 614–618.

    Article  Google Scholar 

  • Doster, W., Bowne, S. F., Frauenfelder, H., Reinisch, L., and Shyamsunder, E. (1987) Recombination of Carbon Monoxide to Ferrous Horseradish Peroxidase Types A and C. J. Mol. Biol., 194, 299–312.

    Article  Google Scholar 

  • Duddell, D. A., Morris, R. J., and Richards, J. T. (1979) Ultra-fast Recombination in Nanosecond Laser Photolysis of Carbonylhaemoglobin. J. Chem. Soc., Chem. Commun., 75–76.

    Google Scholar 

  • Dunford, H. B. (1991) Horseradish Peroxidase: Structure and Kinetic Properties, in Peroxidases in Chemistry and Biology (J. Everse, K. E. Everse, and M. B. Grisham, Eds.), CRC, Boca Raton, FL, 2, 1–24.

    Google Scholar 

  • Dunford, H. B., and Stillman, J. S. (1976) On the Function and Mechanism of Action of Peroxidases. Coord. Chem. Rev., 19, 187–251.

    Article  Google Scholar 

  • Edwards, S. L., Xuong, N. H., Hamlin, R. C., and Kraut, J. (1987) Crystal Structure of Cytochrome c Peroxidase Compound I. Biochemistry, 26, 1503–1511.

    Article  Google Scholar 

  • Egeberg, K. D., Springer, B. A., Martinis, S. A., Sligar, S. G., Morikis, D., and Champion, P. M. (1990) Alteration of Sperm Whale Myoglobin Heme Axial Ligation by Site-directed Mutagenesis. Biochemistry, 29, 9783–9791.

    Article  Google Scholar 

  • Ellis, P. E., Jr., Linard, J. E., Szymanski, T., Jones, R. D., Budge, J. R., and Basolo, F. (1980) Axial Ligation Constants of Iron(II) and Cobalt(II) “Capped” Porphyrins. J. Am. Chem. Soc., 102, 1889–1896.

    Article  Google Scholar 

  • Erman, J. E., Vitello, L. B., Miller, M. A., and Kraut, J. (1992) Active-site Mutations in Cytochrome c Peroxidase: A Critical Role for Histidine-52 in the Rate of Formation of Compound. I. J. Am. Chem. Soc., 114, 6592–6593.

    Article  Google Scholar 

  • Everse, J., Everse, K. E., and Grisham, M. B. (Eds.) (1991) Peroxidases in Chemistry and Biology. CRC, Boca Raton, Fl.

    Google Scholar 

  • Fann, W.-P. (1992) Cytochrome P-450 Model Compounds: Mechanisms of Iron(III) Porphyrin Catalyzed Oxidation Reactions. Doctoral Dissertation, University of California, San Diego.

    Google Scholar 

  • Felton, R. H., Owen, G. S., Dolphin, D., and Fajer, J. (1971) Iron(IV) Porphyrins. J. Am. Chem. Soc., 93, 6332–6334.

    Article  Google Scholar 

  • Fenton, D. E. (1989) Copper Biosites: The Merits of Models. Pure Appl. Chem., 61, 903–908.

    Article  Google Scholar 

  • Finzel, B. C., Poulos, T. L., and Kraut, J. (1984) Crystal Structure of Yeast Cytochrome c Peroxidase Refined at 1.7-Å Resolution. J. Biol. Chem., 259, 13027–13036.

    Google Scholar 

  • Fita, I., and Rossmann, M. G. (1985) The Active Center of Catalase. J. Mol. Biol., 185, 21–37.

    Article  Google Scholar 

  • Franzus, B., Baird, W. C., Jr., Chamberlain, N. F., Hines, T., and Snyder, E. I. (1968) On the Question of 7-syn and 7-anti-proton Absorptions in the Nuclear Magnetic Resonance Spectra of Norbornenes. J. Am. Chem. Soc., 90, 3721–3724.

    Article  Google Scholar 

  • Franzus, B., Baird, W. C., Jr., and Surridge, J. H. (1968) Synthesis of exo,exo-5,6-Dideuteriosyn-7-acetoxynorbornene and exo,exo-5,6-Dideuterio-2-norbornene. J. Org. Chem., 33, 1288–1290.

    Article  Google Scholar 

  • Frew, J. E., and Jones, P. (1984) Structure and Functional Properties of Peroxidases and Catalases, in Advances in Inorganic and Bioinorganic Mechanisms (A. G. Sykes, Ed.), Academic Press, New York, 3, pp. 175–212.

    Google Scholar 

  • Fujii, H., and Ichikawa, K. (1992) Preparation and Characterization of an A1u Oxoiron(IV) Porphyrin π-cation-radical Complex. Inorg. Chem., 31, 1110–1112.

    Article  Google Scholar 

  • Geibel, J., Cannon, J., Campbell, D., and Traylor, T. G. (1978) Model Compounds for R-state and T-state Hemoglobins. J. Am. Chem. Soc., 100, 3575–3585.

    Article  Google Scholar 

  • Giacometti, G. M., Brunori, M., Antonini, E., DiIorio, E. E., and Winterhalter, K. H. (1980) The Reaction of Hemoglobin Zürich with Oxygen and Carbon Monoxide. J. Biol. Chem., 255, 6160–6165.

    Google Scholar 

  • Gibson, Q. H. (1959) The Kinetics of Reactions Between Haemoglobin and Gases, in Progress in Biophysics and Biophysical Chemistry (J. A. V. Butler and B. Katz, Eds.), Pergamon Press, New York 9, pp. 1–53.

    Google Scholar 

  • Gibson, Q. H. (1970) The Reaction of Oxygen with Hemoglobin and the Kinetic Basis of the Effect of Salt on Binding of Oxygen. J. Biol. Chem., 245, 3285–3288 .

    Google Scholar 

  • Gibson, Q. H., and Smith, M. H. (1965) Rates of Reaction of Ascaris Haemoglobins with Ligands. Proc. R. Soc. (London) Ser. B., 163, 206–214.

    Article  Google Scholar 

  • Gold, A., Jayaraj, K., Doppelt, P., Weiss, R., Bill, E., Dong, X. Q., Bominaar, E. L., Trautwein, A. X., and Winkler, H. (1989) Oxoferryl (2,6-Dichlorophenyl) Porphyrin Cation Radical: Evidence for Weak Metal-Radical Spin Coupling. New J. Chem., 13, 169–172.

    Google Scholar 

  • Gold, A., Jayaraj, K., Doppelt, P., Weiss, R., Chottard, G., Bill, E., Ding, X., and Trautwein, A. X. (1988) Oxoferryl Complexes of the Halogenated(porphinato)iron Catalyst: (Tetrakis(2, 6-dichlorophenyl)-porphinato) Iron. J. Am. Chem. Soc., 110, 5756–5761.

    Article  Google Scholar 

  • Golly, I., Hlavica, P., and Schartau, W. (1988) The Functional Role of Cytochrome b5 Reincorporated Into Hepatic Microsomal Fractions. Arch. Biochem. Biophys., 260, 232–240.

    Article  Google Scholar 

  • Goy, M. F. (1991) cGmp: The Wayward Child of the Cyclic Nucleotide Family. Trends Neurosci., 14, 293–299.

    Article  Google Scholar 

  • Greene, B. I., Hochstrasser, R. M., Weisman, R. B., and Eaton, W. A. (1978) Spectroscopic Studies of Oxy- and Carbonmonoxyhemoglobin After Pulsed Optical Excitation. Proc. Natl. Acad. Sci. U.S.A., 75, 5255–5259.

    Article  Google Scholar 

  • Groves, J. T. (1985) Key Elements of the Chemistry of Cytochrome P-450. The Oxygen Rebound Mechanism. J. Chem. Educ., 62, 928–931.

    Article  Google Scholar 

  • Groves, J. T., and Gilbert, J. A. (1986) Electrochemical Generation of an Iron(IV) Porphyrin. Inorg. Chem., 25, 123–125.

    Article  Google Scholar 

  • Groves, J. T., Haushalter, R. C., Nakamura, M., Nemo, T. E., and Evans, B. J. (1981) High-valent Iron-Porphyrin Complexes Related to Peroxidase and Cytochrome P-450. J. Am. Chem. Soc., 103, 2884–2886.

    Article  Google Scholar 

  • Groves, J. T., Kruper, W. J., Jr., and Haushalter, R. C. (1980) Hydrocarbon Oxidations with Oxometalloporphinates. Isolation and Reactions of a (Porphinato)manganese(V) Complex. J. Am. Chem. Soc., 102, 6375–6377.

    Article  Google Scholar 

  • Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J. (1978) Aliphatic Hydroxylation by Highly Purified Liver Microsomal Cytochrome P-450. Evidence for a Carbon Radical Intermediate. Biochem. Biophys. Res. Commun., 81, 154–160.

    Article  Google Scholar 

  • Groves, J. T., and Myers, R. S. (1983) Catalytic Asymmetric Epoxidations with Chiral Iron Porphyrins. J. Am. Chem. Soc., 105, 5791–5796.

    Article  Google Scholar 

  • Groves, J. T., and Nemo, T. E. (1983a) Epoxidation Reactions Catalyzed by Iron Porphyrins. Oxygen Transfer from Iodosylbenzene. J. Am. Chem. Soc., 105, 5786–5791.

    Article  Google Scholar 

  • Groves, J. T., and Nemo, T. E. (1983b) Aliphatic Hydroxylation Catalyzed by Iron Porphyrin Complexes. J. Am. Chem. Soc., 105, 6243–6248.

    Article  Google Scholar 

  • Groves, J. T., Nemo, T. E., and Myers, R. S. (1979) Hydroxylation and Epoxidation Catalyzed by Iron-Porphyrine Complexes. Oxygen Transfer from Iodosylbenzene. J. Am. Chem. Soc., 101, 1032–1033.

    Article  Google Scholar 

  • Groves, J. T., and Subramanian, D. V. (1984) Hydroxylation by Cytochrome P-450 and Metalloporphyrin Models. Evidence for Allylic Rearrangement. J. Am. Chem. Soc., 106, 2177–2181.

    Article  Google Scholar 

  • Groves, J. T., and Watanabe, Y. (1986a) The Mechanism of Olefin Epoxidation by Oxo-iron Porphyrins. Direct Observation of an Intermediate. J. Am. Chem. Soc., 108, 507–508.

    Article  Google Scholar 

  • Groves, J. T., and Watanabe, Y. (1986b) Oxygen Activation by Metalloporphyrins Related to Peroxidase and Cytochrome P-450. Direct Observation of the Oxygen-Oxygen Bond Cleavage Step. J. Am. Chem. Soc., 108, 7834–7836.

    Article  Google Scholar 

  • Groves, J. T., and Watanabe, Y. (1988) Reactive Iron Porphyrin Derivatives Related to the Catalytic Cycles of Cytochrome P-450 and Peroxidase. Studies of the Mechanism of Oxygen Activation. J. Am. Chem. Soc., 110, 8443–8452.

    Article  Google Scholar 

  • Guengerich, F. P. (1991) Reactions and Significance of Cytochrome P-450 Enzymes. J. Biol. Chem., 266, 10019–10022.

    Google Scholar 

  • Guengerich, F. P., and Macdonald, T. L. (1984) Chemical Mechanisms of Catalysis by Cytochromes P-450: A Unified View. Acc. Chem. Res., 17, 9–16.

    Article  Google Scholar 

  • Guengerich, F. P., and Macdonald, T. L. (1990) Mechanisms of Cytochrome P-450 Catalysis. Faseb J., 4, 2453–2459.

    Google Scholar 

  • Gunter, M. J., and Turner, P. (1991) Metalloporphyrins as Models for the Cytochromes P-450. Coord. Chem. Rev., 108, 115–161.

    Article  Google Scholar 

  • Hambright, P. (1975) Dynamic Coordinaton Chemistry of Metalloporphyrins, in Porphyrins and Metalloporphyrins (K. M. Smith, Ed.), Elsevier, New York, pp. 236–278.

    Google Scholar 

  • Hartman, J. R., Rardin, R. L., Chaudhuri, P., Pohl, K., Wieghardt, K., Nuber, B., Weiss, J., Papaefthymiou, G. C., Frankel, R. B., Lippard, S. J. (1987) Synthesis and Characterization of (µ;-Hydroxo)bis(µ-acetato)diiron(II) and (µ-Oxo)bis(µ-acetato)diiron(III)1,4,7-trimethyl-1,4,7-triazacyclononane Complexes as Models for Binuclear Iron Centers in Biology; Properties of the Mixed Valence Diiron(II,III) Species. J. Am. Chem. Soc. , 109, 7387–7396.

    Article  Google Scholar 

  • Hashimoto, T., Dyer, R. L., Crossley, M. J., Baldwin, J. E., and Basolo, F. (1982) Ligand, Oxygen, and Carbon Monoxide Affinities of Iron(II) Modified “Capped’ Porphyrins. J. Am. Chem. Soc., 104, 2101–2109.

    Article  Google Scholar 

  • Hasinoff, B. B. (1974) Kinetic Activation Volumes of the Binding of Oxygen and Carbon Monoxide to Hemoglobin and Myoglobin Studied on a High-pressure Laser Flash Photolysis Apparatus. Biochemistry, 13, 3111–3117.

    Article  Google Scholar 

  • Hasinoff, B. B. (1977) Simultaneous Diffusion and Chemical Activation Control of the Kinetics of the Binding of Carbon Monoxide to Ferroprotoporphyrin IX in Glycerol-Water Mixtures of High Viscosity. Can. J. Chem., 55, 3955–3960.

    Article  Google Scholar 

  • Hasinoff, B. B. (1981) Diffusion-controlled Reaction Kinetics of the Binding of Carbon Monoxide to the Heme Undecapeptide of Cytochrome c (Microperoxidase 11) in High Viscosity Solvents. Arch. Biochem. Biophys., 211, 396–402.

    Article  Google Scholar 

  • He, G.-X., and Bruice, T. C. (1991) Nature of the Epoxidizing Species Generated by Reaction of Alkyl Hydroperoxides with Iron(III) Porphyrins. Oxidation of cis-Stilbene and (Z)-1,2-bis(trans-2,trans-3-Diphenyl-cyclopropyl)ethene by t-BuOOH in the Presence of [meso-Tetrakis (2,4,6-trimethylphenyl)porphinato, [meso-Tetrakis(2,6-dichlorophenyl) porphinato]-, and [meso-Tetrakis(2,6-dibromophenyl)porphinato]iron(III) Chloride. J. Am. Chem. Soc., 113, 2747–2753.

    Article  Google Scholar 

  • Helms, A., Heiler, D., and McLendon, G. (1992) Electron Transfer in bisPorphyrin Donor-Acceptor Compounds with Polyphenylene Spacers Shows a Weak Distance Dependence. J. Am. Chem. Soc., 114, 6227–6238.

    Article  Google Scholar 

  • Henry, E. R., Sommer, J. H., Hofrichter, J., and Eaton, W. A. (1983) Geminate Recombination of Carbon Monoxide to Myoglobin. J. Mol. Biol., 166, 443–451.

    Article  Google Scholar 

  • Herron, N., Cameron, J. H., Neer, G. L., and Busch, D. H. (1983) A Totally Synthetic (Nonporphyrin) Iron(II) Dioxygen Carrier That Is Fully Functional Under Ambient Conditions. J. Am. Chem. Soc., 105, 298–301.

    Article  Google Scholar 

  • Hewson, W. D., and Hager, L. P. (1979) Peroxidases, Catalases, and Chloroperoxidase, in The Porphyrins (D. Dolphin, Ed.), Academic Press, New York, 7, pp. 295–332 .

    Chapter  Google Scholar 

  • Hildebrandt, A., and Estabrook, R. W. (1971) Evidence for the Participation of Cytochrome b 5 in Hepatic Microsomal Mixed-function Oxidation Reactions. Arch. Biochem. Biophys., 143, 66–79.

    Article  Google Scholar 

  • Hiom, J., Paine, J. B., III, Zapf, U., and Dolphin, D. (1983) The Synthesis of Cofacial Porphyrin Dimers. Can. J. Chem., 61, 2220–2223.

    Article  Google Scholar 

  • Hirao, T., Ohno, M., and Ohshiro, Y. (1990) Mediation of Orthoquinones in the MnTPPCl-catalyzed Epoxidation with Hydrogen Peroxide. Tetrahedron Lett., 31, 6039–6042.

    Article  Google Scholar 

  • Hoard, J. L. (1966) Stereochemistry of Porphyrins, in Hemes and Hemoproteins (B. Chance, R. W. Estabrook, and T. Yonetani, Eds.), Academic Press, New York, pp. 9–24.

    Google Scholar 

  • Hofmann, F., Dostmann, W., Keilbach, A., Landgraf, W., and Ruth, P. (1992) Structure and Physiological Role of cGmp-dependent Protein Kinase. Biochim. Biophys. Acta, 1135, 51–60.

    Article  Google Scholar 

  • Holm, R. H. (1987) Metal-centered Oxygen Atom Transfer Reactions. Chem. Rev., 87, 1401–1449.

    Article  Google Scholar 

  • Huestis, W. H., and Raftery, M. A. (1975) Conformation and Cooperativity in Hemoglobin. Biochemistry, 14, 1886–1892.

    Article  Google Scholar 

  • Hutchinson, J. A., Traylor, T. G., and Noe, L. J. (1982) Picosecond Study of the Photodissociation of a Model Hemoprotein Compared to Hemoglobin. J. Am. Chem. Soc., 104, 3221–3223.

    Article  Google Scholar 

  • Ignarro, L. J. (1990) Haem-dependent Activation of Guanylate Cyclase and Cyclic Gmp Formation by Endogenous Nitric Oxide: A Unique Transduction Mechanism for Transcellular Signaling. Pharm. Toxicol., 67, 1–7.

    Article  Google Scholar 

  • Iley, J., Constantino, L., Norberto, F., and Rosa, E. (1990) Oxidation of the Methyl Groups of N,N-Dimethylbenzamides by a Cytochrome P450 Mono-oxygenase Model System. Tetrahedron Lett., 31, 4921–4922.

    Article  Google Scholar 

  • Imamura, T., Riggs, A., and Gibson, Q. H. (1972) Equilibria and Kinetics of Ligand Binding by Leghemoglobin from Soybean Root Nodules. J. Biol. Chem., 247, 521–526.

    Google Scholar 

  • Jameson, G. B., Molinaro, F. S., Ibers, J. A., Collman, J. P., Brauman, J. I., Rose, E., and Suslick, K. S. (1980) Models for the Active Site of Oxygen-binding Hemoproteins. Dioxygen Binding Properties and the Structures of (2-Methylimidazole-meso-tetra(α,α,α,α-o-pivalamidophenyl) Porphyrinatoiron(II)-ethanol and Its Dioxygen Adduct. J. Am. Chem. Soc., 102, 3224–3237.

    Article  Google Scholar 

  • Jameson, G. B., Robinson, W. T., and Ibers, J. A. (1982) Mercaptan-Tail Porphyrins. Synthetic Analogs for the Active Site of Cytochrome P-450, in Hemoglobin and Oxygen Binding (C. Ho, Ed.), Elsevier, New York, pp. 37–40.

    Google Scholar 

  • Jameson, G. B., Rodley, G. A., Robinson, W. T., Gagne, R. R., Reed, C. A., and Collman, J. P. (1978) Structure of a Dioxygen Adduct of (1-Methylimidazole) — meso tetrakis(α,α,α,α, — o-pivalamidophenyl)porphinatoiron(II). An Iron Dioxygen Model for the Hemne Comnponent of Oxyrnyoglobin. Inorg. Chem., 17, 850–857.

    Article  Google Scholar 

  • Jerina, D. M., and Daly, J. W. (1974) Arene Oxides: A New Aspect of Drug Metabolism. Science, 185, 573–582.

    Article  Google Scholar 

  • Job, D., and Dunford, H. B. (1976) Substituent Effect on the Oxidation of Phenols and Aromnatic Amines by Horseradish Peroxidase Comnpound I. Eur. J. Biochem., 66, 607–614.

    Article  Google Scholar 

  • Jones, P., Mantle, D., Davies, D. M., and Kelly, H. C. (1977) Hydroperoxidase Activities of Ferrihemes: Heme Analogues of Peroxidase Enzyme Intermediates. Biochemistry, 16, 3974–3978.

    Article  Google Scholar 

  • Jones, P., Mantle, D., and Wilson, I. (1983) Influence of Ligand Modification on the Kinetics of the Reactions of Iron(III) Porphyrins with Hydrogen Peroxide in Aqueous Solutions. J. Chem. Soc., Dalton Trans., 161–164.

    Google Scholar 

  • Jongeward, K. A., Magde, D., Taube, D. J., Marsters, J. C., Traylor, T. G., and Sharma, V. S. (1988a) Picosecond and Nanosecond Gerninate Recomnbination of Myoglobin with CO, O2, No, and Isocyanides. J. Am. Chem. Soc., 110, 380–387.

    Article  Google Scholar 

  • Jongeward, K. A., Magde, D., Taube, D. J., and Traylor, T. G. (1988b) Picosecond Kinetics of Cytochromes b 5 and c. J. Biol. Chem., 263, 6027–6030.

    Google Scholar 

  • Jongeward, K. A., Marsters, J. C., Mitchell, M. J., Magde, D., and Sharma, V. S. (1986) Picosecond Gemninate Recomnbination of Nitrosylrnyoglobins. Biochem. Biophys. Res. Commun., 140, 962–966.

    Article  Google Scholar 

  • Karaman, R., Almarsson, O., Blasko, A., and Bruice, T. C. (1992) Design, Synthesis, and Characterization of a “Shopping Basket” Bisporphyrin. The First Examples of Triply Bridged Closely Interspaced Cofacial Porphyrin Dimners. J. Org. Chem., 57, 2169–2173.

    Article  Google Scholar 

  • Karlin, K. D., and Gultneh, Y. (1987) Binding and Activation of Molecular Oxygen by Copper Complexes. Prog. Inorg. Chem., 35, 219–327.

    Article  Google Scholar 

  • Karlin, K. D., Tyeklar, Z., Farooq, A., Haka, M. S., Ghosh, P., Cruse, R. W., Gultneh, Y., Hayes, J. C., Toscano, P. J., and Zubieta, J. (1992) Dioxygen-copper Reactivity and Functional Modeling of Hemnocyanins: Reversible Binding of O2 and CO to Dicopper(I) Complexes [CuI 2(L)]2+ (L = dinucleating ligand) and the Structure of a Bis (Carbonyl) [CuI 2(L)(CO2)]2+. Inorg. Chem., 31, 1436–1451.

    Article  Google Scholar 

  • Kelly, H. C., Davies, D. M., King, M. J., and Jones, P. (1977) Pre-steadystate Kinetics of Intermediate Formation in the Deuteroferriheme-Hydrogen Peroxide System. Biochemistry, 16, 3543–3549.

    Article  Google Scholar 

  • Kim, K., and Ibers, J. A. (1991) Structure of a Carbon Monoxide Adduct of a “Capped” Porphyrin: Fe (C 2-cap)(CO)(1-methylimidazole). J. Am. Chem. Soc., 113, 6077–6081.

    Article  Google Scholar 

  • Koola, J. D., and Kochi, J. K. (1987) Cobalt-catalyzed Epoxidation of Olefins. Dual Pathways for Oxygen Atom Transfer. J. Org. Chem., 52, 4545–4553.

    Article  Google Scholar 

  • Kreysel, M., and Voegtle, F. (1992) One-pot Synthesis of a Fourfold Bridged Double-decker Porphyrin. Synthesis, 733–734.

    Google Scholar 

  • Kunze, K. L., Mangold, B. L. K., Wheeler, C., Beilan, H. S., and Ortiz de Montellano, P. R. (1983) The Cytochrome P-450 Active Site. J. Biol. Chem., 258, 4202–4207.

    Google Scholar 

  • Labeque, R., and Marnett, L. J. (1988) Reaction of Hematin with Allylic Fatty Acid Hydroperoxides: Identification of Products and Implications for Pathways of Hydroperoxide-dependent Epoxidation of 7,8-Dihydroxy7,8-dihydrobenzo[a]pyrene. Biochemistry, 27, 7060–7070.

    Article  Google Scholar 

  • Labeque, R., and Marnett, L. J. (1989) Homolytic and Heterolytic Scission of Organic Hydroperoxides By (meso-Tetraphenylporphinato)iron and Its Relation to Olefin Epoxidation. J. Am. Chem. Soc., 111, 6621–6627.

    Article  Google Scholar 

  • La Mar, G. N., and De Ropp, J. S. (1980) Proton Nuclear Magnetic Resonance Characterization of the Electronic Structure of Horseradish Peroxidase Compound I. J. Am. Chem. Soc., 102, 395–397.

    Article  Google Scholar 

  • La Mar, G. N., and Walker, F. A. (1979) Nuclear Magnetic Resonance of Paramagnetic Metalloporphyrins, in The Porphyrins (D. Dolphin, Ed.), Academic Press, New York, Iv, pp. 61–157.

    Chapter  Google Scholar 

  • Latos-Grazynski, L., Cheng, R.-J., La Mar, G. N., and Balch, A. L. (1982) Oxygenation Patterns for Substituted meso-Tetraphenylporphyrin Complexes of Iron(II). Spectroscopic Detection of Dioxygen Complexes in the Absence of Amines. J. Am. Chem. Soc., 104, 5992–6000.

    Article  Google Scholar 

  • Latour, J. M. (1988) Binuclear Active Sites of Copper Proteins. Stimulants for a New Copper Coordination Chemistry. Bull. Soc. Chim. Fr., 508–523.

    Google Scholar 

  • Lavalette, D., and Momenteau, M. (1982) Transient Oxygenation of Chelated Iron(II) Porphyrins: Improved Kinetics of Carbon Monoxide Replacement by Oxygen. J. Chem. Soc., Perkin Trans. 2, 385–388.

    Google Scholar 

  • Lavalette, D., Tétreau, C., and Momenteau, M. (1979) Laser Photolysis of HemoCHRomes. Kinetics of Nitrogenous Bases Binding to Fourcoordinated and Five-coordinated Iron(II) Tetraphenylporphyrine. J. Am. Chem. Soc., 101, 5395–5401.

    Article  Google Scholar 

  • Lee, C. H., and Lee, C. K. (1992) Synthesis of Sterically Hindered Strapped Porphyrins. Bull. Korean Chem. Soc., 13, 352–354.

    Google Scholar 

  • Lee, W. A., and Bruice, T. C. (1985) Homolytic and Heterolytic Oxygen-Oxygen Bond Scissions Accompanying Oxygen Transfer to Iron(III) Hydroperoxides. A Mechanistic Criterion for Peroxidase and Cytochrome P-450. J. Am. Chem. Soc., 107, 513–514.

    Article  Google Scholar 

  • Lee, W. A., Graetzel, M., and Kalyanasundaram, K. (1984) Anomalous Ortho Effects in Sterically Hindered Porphyrins: Tetrakis(2,6-dimethylphenyl) Porphyrin and Its Sulfonato Derivative. Chem. Phys. Lett., 107, 308–312.

    Article  Google Scholar 

  • Lee, W. A., Yuan, L.-C., and Bruice, T. C. (1988) Oxygen Transfer from Percarboxylic Acids and Alkylhydroperoxides to (meso-Tetraphenylporphinato)iron(III) and Chromium(III). J. Am. Chem. Soc., 110, 4277–4283.

    Article  Google Scholar 

  • Lemberg, R. and Barrett, J. (1973) Cytochromes, Academic Press, London, pp. 122–216.

    Google Scholar 

  • Linard, J. E., Ellis, P. E., Jr., Budge, J. R., Jones, R. D., and Basolo, F. (1980) Oxygenation of Iron(II) and Cobalt(II) “Capped” Porphyrins. J. Am. Chem. Soc., 102, 1896–1904.

    Article  Google Scholar 

  • Lincoln, T. M., and Cornwell, T. L. (1991) Towards an Understanding of the Mechanism of Action of Cyclic Amp and Cyclic Gmp in Smooth Muscle Relaxation. Blood Vessels, 28, 129–137.

    Google Scholar 

  • Lindsay Smith, J. R., Balasubramanian, P. N., and Bruice, T. C. (1988) The Dynamics of Reaction of a Water-soluble and Non-µ-oxo Dimer Forming Iron(III) Porphyrin with tert-Butyl Hydroperoxide in Aqueous Solution. 1. Studies Using a Trap for Immediate Oxidation Products. J. Am. Chem. Soc., 110, 7411–7418.

    Article  Google Scholar 

  • Lindsay Smith, J. R., and Lower, R. (1991) The Mechanism of Reaction Between tert-Butyl Hydroperoxide and 5,10,15,20-Tetra(N-methyl-4-pyridyl)porphyrinatoiron(III) Pentachloride in Aqueous Solution. J. Chem. Soc., Perkin Trans., 2, 31–39.

    Google Scholar 

  • Lindsay Smith, J. R., and Mortimer, D. N. (1985) Oxidative N-Dealkylation of N,N-Dimethylbenzylamines by Metalloporphyrin-catalysed Model Systems for Cytochrome P450 Monooxygenases. J. Chem. Soc., Chem. Commun., 64–65.

    Google Scholar 

  • Lindsay Smith, J. R., and Mortimer, D. N. (1986) Model Systems for Cytochrome P450-dependent Mono-oxygenases. Part 5. Amine Oxidation. Part 17. Oxidative N-Dealkylation of Tertiary Amines by Metalloporphyrincatalysed Model Systems for Cytochrome P450 Monooxygenases. J. Chem. Soc., Perkin Trans., 2, 1743–1749.

    Google Scholar 

  • Lindsay Smith, J. R., and Sleath, P. R. (1982) Model Systems for Cytochrome P450 Dependent Monooxygenases. Part 1. Oxidation of Alkenes and Aromatic Compounds by Tetraphenylporphinatoiron(III) Chloride and Iodosylbenzene. J. Chem. Soc., Perkin Trans., 2, 1009–1015.

    Google Scholar 

  • Lindsay Smith, J. R., and Sleath, P. R. (1983a) Model Systems for Cytochrome P450 Dependent Monooxygenases. Part 2. Kinetic Isotope Effects for the Oxidative Demethylation of Anisole and Anisole-Me-3d by Cytochrome P450 Dependent Monooxygenases and Model Systems. J. Chem. Soc., Perkin Trans., 2, 621–628.

    Google Scholar 

  • Lindsay Smith, J. R., and Sleath, P. R. (1983b) Model Systems for Cytochrome P450-dependent Monooxygenases. Part 3. The Stereochemistry of Hydroxylation of Cis- and Trans-decahydronaphthalene by Chemical Models for Cytochrome P450 Monooxygenases. J. Chem. Soc., Perkin Trans., 2, 1165–1169.

    Google Scholar 

  • Long, E. C., and Hecht, S. M. (1988) Direct Comparison of Oxygen Transfer By Iron Bleomycin and Zinc Bleomycin. Tetrahedron Lett., 28, 6413–6416.

    Article  Google Scholar 

  • Lopez, M. A. (1987) Dioxygen and Carbon Monoxide Binding to Model Hemne Systems. Doctoral Dissertation, University of California, San Diego.

    Google Scholar 

  • McGall, G. H., Rabow, L. E., Asheley, G. W., Wu, S. H., Kozarich, J. W. and Stubbe, J. (1992) New Insight Into the Mechanism of Base Propenal Formation During BleomyciN-mediated Dna Degradation. J. Am. Chem. Soc., 114, 4958–4967.

    Article  Google Scholar 

  • Maillard, P., Guerquin-Kern, J.-L., Momenteau, M., and Gaspard, S. (1989) Glycoconjugated Tetrapyrrolic Macrocycles. J. Am. Chem. Soc., 111, 9125–9127.

    Article  Google Scholar 

  • Maillard, P., Schaeffer, C., Huel, C., Lhoste, J. M., and Momenteau, M. (1988) Both-faces Hindered Porphyrins. Part 5. Synthesis and Characterization of Iron(III) Basket Handle Porphyrins Having Mutiple Secondary Amide Groups Inserted in the Superstructures. J. Chem. Soc., Perkin Trans., 1, 3285–3296.

    Article  Google Scholar 

  • Malmström, B. G. (1990a) Cytochrome c Oxidase as a Redox-linked Proton Pump. Chem. Rev., 90, 1247–1260.

    Article  Google Scholar 

  • Malmström, B. G. (1990b) Cytochrome Oxidase: Some Unsolved Problems and Controversial Issues. Arch. Biochem. Biophys., 280, 233–241.

    Article  Google Scholar 

  • Mansuy, D. (1987) Cytochrome P-450 and Synthetic Models. Pure App. Chem., 59, 759–770.

    Article  Google Scholar 

  • Mansuy, D. (1990) Biomimetic Catalysts for Selective Oxidation in Organic Chemistry. Pure App. Chem., 62, 741–746.

    Article  Google Scholar 

  • Mansuy, D., Bartoli, J.-F., Chottard, J.-C., and Lange, M. (1980) Metalloporphyrin-catalyzed Hydroxylation of Cyclohexane by Alkyl Hydroperoxides: Pronounced Efficiency of Iron-porphyrins. Angew. Chem. Int. Ed. Engl., 19, 909–910.

    Article  Google Scholar 

  • Mansuy, D., Battioni, P., and Battioni, J.-P. (1989) Chemical Model Systems for Drug-metabolizing Cytochrome P-450-dependent Monooxygenases. Eur. J. Biochem., 184, 267–285.

    Article  Google Scholar 

  • Mansuy, D., Battioni, P., and Renaud, J.-P. (1984) In the Presence of Imidazole, Iron- and Manganese-porphyrins Catalyse the Epoxidation of Alkenes by Alkyl Hydroperoxides. J. Chem. Soc., Chem. Commun., 1255–1257.

    Google Scholar 

  • Mansuy, D., Devocelle, L., Artaud, I., and Battioni, J.-P. (1985) Alkene Oxidations by Iodosylbenzene Catalyzed by Iron-porphyrins: Fate of the Catalyst and Formation of n-Alkyl-porphyrin Green Pigments from Monosubstitued Alkenes as in Cytochrome P-450 Reactions. Nouv. J. Chim., 9, 711–716.

    Google Scholar 

  • Marden, M. C. (1982) A Coupled Diffusion and Barrier Model for the Recombination Kinetics of Myoglobin with Carbon Monoxide. Eur. J. Biochem., 128, 399–404.

    Article  Google Scholar 

  • Marden, M. C., Hazard, E. S., III, and Gibson, Q. H. (1986) Protoheme-Carbonmonoxide Geminate Kinetics. Biochemistry, 25, 2786–2792.

    Article  Google Scholar 

  • Martin, J. L., Migus, A., Poyart, C., Lecarpentier, Y., Antonetti, A., and Orszag, A. (1982) Femtosecond Photodissociation and Picosecond Recombination of O2 in Myoglobin: A Plausible Explanation for the Low Quantum Yield in MbO2. Biochem. Biophys. Res. Commun., 107, 803–810.

    Article  Google Scholar 

  • Martin, J. L., Migus, A., Poyart, C., Lecarpentier, Y., Astier, R., and Antonetti, A. (1983) Femtosecond Photolysis of CO-ligated Protoheme and Hemoproteins: Appearance of Deoxy Species with a 350-fsec Time Constant. Proc. Natl. Acad. Sci. U.S.A., 80, 173–177.

    Article  Google Scholar 

  • Martin, J. L., and Vos, M. H. (1992) Femtosecond Biology. Annu. Rev. Biophys. Biomol. Struct., 21, 199–222.

    Article  Google Scholar 

  • Mashiko, T., Dolphin, D., Nakano, T., and Traylor, T. G. (1985) N-Alkylporphyrin Formation During the Reactions of Cytochrome P-450 Model Systems. J. Am. Chem. Soc., 107, 3835–3736.

    Article  Google Scholar 

  • Mathews, F. S. (1985) The Structure, Function and Evolution of Cytochromes. Prog. Biophys. Mol. Biol., 45, 1–56.

    Article  Google Scholar 

  • Meunier, B. (1986) Metalloporphyrin-catalyzed Oxygenation of Hydrocarbons. Bull. Soc. Chim. Fr., 4, 578–594.

    Google Scholar 

  • Meunier, B. (1992) Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative Dna Cleavage. Chem. Rev., 92, 1411–1456.

    Article  Google Scholar 

  • Meunier, B., Guilmet, E., De Carvalho, M.-E., and Poilblanc, R. (1984) Sodium Hypochlorite: A Convenient Oxygen Source for Olefin Epoxidation Catalyzed By (Porphinato)manganese Complexes. J. Am. Chem. Soc., 106, 6668–6676.

    Article  Google Scholar 

  • Miers, J. B., Postlewaite, J. C., Cowen, B. R., Roemig, G. R., Lee, I.-Y.S., and Dlott, D. D. (1991) Preexponential-limited Solid State Chemistry: Ultrafast Rebinding of a Heme Ligand Complex in a Glass or Protein Matrix. J. Chem. Phys., 94, 1825–1836.

    Article  Google Scholar 

  • Miers, J. B., Postlewaite, J. C., Zyung, T. H., Chen, S., Roemig, G. R., Wen, X., Dlott, D. D., and Szabo, A. (1990) Diffusion Can Explain the Nonexponential Rebinding of Carbon Monoxide to Protoheme. J. Chem. Phys., 93, 8771–8776.

    Article  Google Scholar 

  • Mims, M. P., Porras, A. G., Olson, J. S., Noble, R. W., and Peterson, J. A. (1983) Ligand Binding to Hemne Proteins. J. Biol. Chem., 258, 14219–14232 .

    Google Scholar 

  • Mincey, T., and Traylor, T. G. (1979) Anion Complexes of Ferrous Porphyrins. J. Am. Chem. Soc., 101, 765–766.

    Article  Google Scholar 

  • Mirafzal, G. A., Kim, T., Liu, J. P., and Bauld, N. L. (1992) Cation Radical Probes: Development and Application to Metalloporphyrin-catalyzed Epoxidation. J. Am. Chem. Soc., 114, 10968–10969.

    Article  Google Scholar 

  • Mispelter, J., Momenteau, M., Lavalette, D., and Lhoste, J.-M. (1983) Hydrogen-bond Stabilization of Oxygen in Hemnoprotein Models. J. Am. Chem. Soc., 105, 5165–5166.

    Article  Google Scholar 

  • Miwa, G. T., Walsh, J. S., and Lu, A. Y. H. (1984) Kinetic Isotope Effects on Cytochrome P-450-catalyzed Oxidation Reactions: The Oxidative O-Dealkylation of 7-Ethoxycoumarin. J. Biol. Chem., 259, 3000–3004.

    Google Scholar 

  • Moffat, K., Deatherage, J. F., and Seybert, D. W. (1979) A Structural Model for the Kinetic Behavior of Hemoglobin. Science, 206, 1035–1042.

    Article  Google Scholar 

  • Momenteau, M. (1986) Synthesis and Coordination Properties of Superstructured Iron-porphyrins. Pure App. Chem., 58, 1493–1502.

    Article  Google Scholar 

  • Momenteau, M., and Lavalette, D. (1978) Photodissociation of Nitrogenous Bases from Hemochromes and Kinetics of Recombination of Axial Bases. J. Am. Chem. Soc., 100, 4322–4324.

    Article  Google Scholar 

  • Momenteau, M., and Lavalette, D. (1982) Kinetic Evidence for Dioxygen Stabilization in Oxygenated Iron(II)-porphyrins by Distal Polar Interactions. J. Chem. Soc., Chem. Commun., 341–343.

    Google Scholar 

  • Momenteau, M., Loock, B., Lavalette, D., Tétreau, C., and Mispelter, J. (1983a) Iron(II) “Hanging Imidazole” Porphyrin: Synthesis and Proximal Ligand Effect on CO and O2 Binding. J. Chem. Soc., Chem. Commun., 962–964.

    Google Scholar 

  • Momenteau, M., Mispelter, J., Loock, B., and Bisagni, E. (1983b) Bothfaces Hindered Porphyrins. Part 1. Synthesis and Characterization of Basket-handle Porphyrins and Their Iron Complexes. J. Chem. Soc., Perkin Trans., 1, 189–196.

    Article  Google Scholar 

  • Moore, G. R., and Pettigrew, G. W. (1990) Cytochromes c: Evolutionary, Structural and Physiochemical Aspects, Springer-Verlag, New York, pp. 1–478.

    Google Scholar 

  • Moore, J. N., Hansen, P. A., and Hochstrasser, R. M. (1987) A New Method for Picosecond Time-resolved Infrared Spectroscopy: Application to CO Photodissociation from Iron Porphyrins. Chem. Phys. Lett., 138, 110–114.

    Article  Google Scholar 

  • Morikis, D., Champion, P. M., Springer, B. A., and Sligar, S. G. (1989) Resonance Raman Investigations of Site-directed Mutants of Myoglobin: Effects of Distal Histidine Replacement. Biochemistry, 28, 4791–4800.

    Article  Google Scholar 

  • Morrison, M., and Schonbaum, G. R. (1976) Peroxidase-Catalyzed Halogenation, in Ann. Rev. Biochemistry, (E. E. Snell, P. D. Boyer, A. Meister, and C. C. Richardson, Eds.), 45, pp. 861–888.

    Google Scholar 

  • Murad, F. (1986) Cyclic Guanosine Monophosphate as a Mediator of Vasodilation. J. Clin. Invest., 78, 1–5.

    Article  Google Scholar 

  • Murthy, M. R. N., Reid, T. J., III, Sicignano, A., Tanaka, N., and Rossmann, M. G. (1981) Structure of Beef Liver Catalase. J. Mol. Biol., 152, 465–499.

    Article  Google Scholar 

  • Nagata, T. (1992) Synthesis and Characterization of Doubly-strapped Porphyrins. Bull. Chem. Soc. Jpn., 65, 385–391.

    Article  Google Scholar 

  • Nakamura, M. (1989) Dissociation Rates of Axially Coordinated Imidazoles and Formation Constants of Low Spin Ferric Complexes Derived from Tetraphenylporphyrin and Tetramesitylporphyrin. Inorg. Chim. Acta, 161, 73–80.

    Article  Google Scholar 

  • Nakatsu, K., and Diamond, J. (1989) Role of cGmp in Relaxation of Vascular and Other Smooth Muscle. Canadian J. Physiol. Pharm., 67, 251–262.

    Article  Google Scholar 

  • Nanthakumar, A., Nasir, M. S., Karlin, K. D., Ravi, N., and Huynh, B. H. (1992) A Cytochrome c Oxidase Reactivity Model: Generation of a Peroxo-bridged Iron/Copper Dinuclear Complex. J. Am. Chem. Soc., 114, 6564–6566.

    Article  Google Scholar 

  • Noble, R. W., Parkhurst, L. J., and Gibson, Q. H. (1970) The Effect of pH on the Reactions of Oxygen and Carbon Monoxide with the Hemoglobin of the Carp, Cyprinus carpio. J. Biol. Chem., 245, 6628–6633.

    Google Scholar 

  • Noe, L. J., Eisert, W. G., and Rentzepis, P. M. (1978) Picosecond Photodissociation and Subsequent Recombination Processes in Carbon Monoxide Hemoglobin. Proc. Natl. Acad. Sci. U.S.A., 75, 573–577.

    Article  Google Scholar 

  • Nordblum, G. D., White, R. E., and Coon, M. J. (1976) Studies on Hydroperoxide-dependent Substrate Hydroxylation by Purified Liver Microsomal Cytochrome P-450 Arch. Biochem. Biophys, 175, 524–533.

    Article  Google Scholar 

  • Noshiro, M., Ullrich, V., and Omura, T. (1981) Cytochrome b 5 as Electron Donor for Oxy-Cytochrome P-450. Eur. J. Biochem., 116, 521–526.

    Article  Google Scholar 

  • Olson, J. S., Andersen, M. E., and Gibson, Q. H. (1971) The Dissociation of the First Oxygen Molecule from Some Mammalian Oxyhemoglobins. J. Biol. Chem., 246, 5919–5923.

    Google Scholar 

  • Olson, J. S., Mathews, A. J., Rohlfs, R. J., Springer, B. A., Egeberg, K. D., Sligar, S. G., Tame, J., Renaud, J.-P., and Nagai, K. (1988) The Role of the Distal Histidine in Myoglobin and Haemoglobin. Nature, 336, 265–266.

    Article  Google Scholar 

  • Olson, J. S., Mckinnie, R. E., Mims, M. P., and White, D. K. (1983) Mechanisms of Ligand Binding to Pentacoordinate Protoheme. J. Am. Chem. Soc., 105, 1522–1527.

    Article  Google Scholar 

  • Onuchic, J. N., Beratan, D. N., Winkler, J. R., and Gray, H. B. (1992) Pathway Analysis of Protein Electron Transfer Reactions. Ann. Rev. Biophys. Biomol. Struct., 21, 349–377.

    Article  Google Scholar 

  • Ortiz De Montellano, P. R. (Ed.) (1986a) Cytochrome P-450: Structure, Mechanism and Biochemistry, Plenum Press, New York.

    Google Scholar 

  • Ortiz De Montellano, P. R. (1986b) Oxygen Activation and Transfer, in Cytochrome P-450: Structure, Mechanism and Biochemistry, Plenum Press, New York, pp. 217–271.

    Google Scholar 

  • Ortiz De Montellano, P. R. (1989) Cytochrome P-450 Catalysis: Radical Intermediates and Dehydrogenation Reactions. Trends Pharm. Sci., 10, 354–359.

    Article  Google Scholar 

  • Ortiz De Montellano, P. R. (1992) Catalytic Sites of Hemoprotein Peroxidases. Ann. Rev. Pharm. Toxicol., 32, 89–107.

    Article  Google Scholar 

  • Ortiz De Montellano, P. R., and Correia, M. A. (1983) Suicidal Destruction of Cytochrome P-450 During Oxidative Drug Metabolism. Ann. Rev. Pharmacol. Toxicol., 23, 481–503.

    Article  Google Scholar 

  • Ortiz De Montellano, P. R., and Kunze, K. L. (1981) Cytochrome P-450 Inactivation: Structure of the Prosthetic Heme Adduct with Propyne. Biochemistry, 20, 7266–7271.

    Article  Google Scholar 

  • Ortiz De Montellano, P. R., Kunze, K. L., and Mico, B. A. (1980) Destruction of Cytochrome P-450 by Olefins: N-Alkylation of Prosthetic Heme. Mol. Pharmacol., 18, 602–605.

    Google Scholar 

  • Ostovic, D., and Bruice, T. C. (1989) Intermediates in the Epoxidation of Alkenes by Cytochrome P-450 Models. 5. Epoxidation of Alkenes Catalyzed by a Sterically Hindered (meso-Tetrakis(2,6-dibromophenyl) porphinato)iron(III) Chloride. J. Am. Chem. Soc., 111, 6511–6517.

    Article  Google Scholar 

  • Ostovic, D., and Bruice, T. C. (1992) Mechanism of Alkene Epoxidation by Iron, Chromium, and Manganese Higher Valent Oxo-metalloporphyrins. Acc. Chem. Res., 25, 314–320.

    Article  Google Scholar 

  • Osuka, A., Kobayashi, F., Nagata, T., and Maruyama, K. (1990) One-pot Synthesis of Strapped Porphyrins and Face-to-face Dimeric Porphyrins. Chem. Lett., 287–290.

    Google Scholar 

  • Padbury, G., Sligar, S. G., Labeque, R., and Marnett, L. J. (1988) Ferric Bleomycin Catalyzed Reduction of 10-Hydroperoxy-8,12-octadecadienoic Acid: Evidence for Homolytic O-O Bond Scission. Biochemistry, 27, 7846–7852.

    Article  Google Scholar 

  • Paine, J. B., III, and Dolphin, D. (1978) Synthesis of Covalently-linked Dimeric Porphyrins. Can. J. Chem., 56, 1710–1712.

    Article  Google Scholar 

  • Parkhurst, L. J. (1979) Hemoglobin and Myoglobin Ligand Kinetics. Ann. Rev. Phys. Chem., 30, 503–546.

    Article  Google Scholar 

  • Parkhurst, L. J. , Sima, P., and Goss, D. J. (1980) Kinetics of Oxygen and Carbon Monoxide Binding to Hemoglobins of glycera Dibranchiati. Biochemistry, 19, 2688–2692.

    Article  Google Scholar 

  • Paul, P. P., Tyeklar, Z., Jacobson, R. R., and Karlin, K. D. (1991) Reactivity Patterns and Comparisons in Three Classes of Synthetic Copper-Dioxygen {Cu2-O2} Complexes: Implication for Structure and Biological Relevance. J. Am Chem. Soc., 113, 5322–5332.

    Article  Google Scholar 

  • Penner-Hahn, J. E., Eble, K. S., Mcmurry, T. J., Renner, M., Balch, A. L., Groves, J. T., Dawson, J. H., and Hodgson, K. O. (1986) Structural Characterization of Horseradish Peroxidase Using Exafs Spectroscopy. Evidence for Fe=O Ligation in Compounds I and II. J. Am. Chem. Soc., 108, 7819–7825.

    Article  Google Scholar 

  • Perutz, M. F. (1979) Regulation of Oxygen Affinity in Hemoglobin. Ann. Rev. Biochem., 48, 327–386.

    Article  Google Scholar 

  • Perutz, M. F., and Ten Eyck, L. F. (1971) Stereochemistry of Cooperative Effects in Hemoglobin, Cold Spring Harbor Symp. Quant. Biol., 36, 295–310.

    Article  Google Scholar 

  • Peterson, M. W., Rivers, D. S., and Richman, R. M. (1985) Mechanistic Considerations in the Photodisproportionation of µ-Oxo-bis((tetra-phenylporphinato)iron(III)). J. Am. Chem. Soc., 107, 2907–2915.

    Article  Google Scholar 

  • Petrich, J. W., Poyart, C., and Martin, J. L. (1988) Photophysics and Reactivity of Heme Proteins: A Femtosecond Absorption Study of Hemoglobin, Myoglobin, and Protoheme. Biochemistry, 27, 4049–4060.

    Article  Google Scholar 

  • Phillips, S. E. V. (1980) Structure and Refinement of Oxymyoglobin at 1.6 Resolution. J. Mol. Biol., 142, 531–554.

    Article  Google Scholar 

  • Pompon, D., and Coon, M. J. (1984) On the Mechanism of Action of Cytochrome P-450. Oxidation and Reduction of the Ferrous Dioxygen Complex of Liver Microsomal Cytochrome P-450 and Cytochrome b 5. J. Biol. Chem., 259, 15377–15385.

    Google Scholar 

  • Portella, C. F. (1987) Fast Kinetic Methods in the Study of Carbon Monoxide and Imidazoles Binding to Iron(II) Porphyrins. The Effect of Ortho Substituents in Tetraphenylhemes. Doctoral dissertation, University of California, San Diego.

    Google Scholar 

  • Portela, C. F., Magde, D., and Traylor, T. G. (1993) The Ortho Effect in Ligation of Iron Tetraphenylporphyrins. Inorg. Chem., 32, 1313–1320.

    Article  Google Scholar 

  • Porter, T. D., and Coon, M. J. (1991) Cytochrome P-450. Multiplicity of Isoforms, Substrates, and Catalytic and Regulatory Mechanisms. J. Biol. Chem., 266, 12469–12472.

    Google Scholar 

  • Portsmouth, D., and Beal, E. A. (1971) Peroxidase Activity of Deuterohemin. Eur. J. Biochem., 19, 479–487.

    Article  Google Scholar 

  • Postlewaite, J. C., Miers, J. B., and Dlott, D. D. (1989) Ultrafast Ligand Rebinding to Protoheme and Heme Octapeptide at Low Temperature. J. Am Chem. Soc., 111, 1248–1255.

    Article  Google Scholar 

  • Poulos, T. L. Heme Enzyme Crystal Structures, in Advances in Inorganic Biochemistry (G. L. Eichhorn and L. G. Marzilli, Eds.), Elsevier, New York, pp. 1–36.

    Google Scholar 

  • Poulos, T. L., Finzel, B. C., and Howard, A. J. (1987) High-resolution Crystal Structure of Cytochrome P450cam. J. Mol. Biol., 195, 687–700.

    Article  Google Scholar 

  • Poulos, T. L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogrland, U., Takio, K., Eriksson, B., Xuong, N.-H, Yonetani, and Kraut, J. (1980) The Crystal Structure of Cytochrome c Peroxidase. J. Biol. Chem., 255, 575–580.

    Google Scholar 

  • Poulos, T. L., and Kraut, J. (1980) The Stereochemistry of Peroxidase Catalysis. J. Biol. Chem., 255, 8199–8205.

    Google Scholar 

  • Quagliariello, E., Papa, S., Palmier, F., Slater, E. C., and Siliprandi, N. (Eds.) (1975) Electron Transport Chains and Oxidative Phosphorylation, Academic Press, New York.

    Google Scholar 

  • Readdy, D., and Chandrashekar, T. K. (1992) Short-chain Basket Handle Porphyrins: Synthesis and Characterization. J. Chem. Soc., Dalton Trans., 619–625.

    Google Scholar 

  • Reed, C. A. (1986) Hemocyanin Cooperativity: A Copper Coordination Chemistry Perspective. in Biological Inorganic Copper Chemistry (K. D. Karlin and J. Zubieta, Eds.), Adenine Press, Guilderland, NY, 1, pp. 61–73.

    Google Scholar 

  • Reisberg, P. I., and Olson, J. S. (1980) Kinetic and Cooperative Mechanisms of Ligand Binding to Hemoglobin. J. Biol. Chem., 255, 4159–4169.

    Google Scholar 

  • Renaud, J.-P., Battioni, P., Bartoli, J. F., and Mansuy, D. (1985) A Very Efficient System for Alkene Epoxidation by Hydrogen Peroxide: Catalysis by Manganese-porphyrins in the Presence of Imidazole. J. Chem. Soc., Chem. Commun., 888–889.

    Google Scholar 

  • Richards, J. L., and Traylor, T. G. (unpublished).

    Google Scholar 

  • Rifkind, J. M. (1988) Hemoglobin, in Adv. Inorg. Biochem. (G. L. Eichhorn and L. G. Marzilli, Eds.), Elsevier, New York, pp. 155–244.

    Google Scholar 

  • Roberts, J. E., Hoffman, B. M., Rutter, R., and Haner, L. P. (1981) Electron-nuclear Double Resonance of Horseradish Peroxidase Compound I. J. Biol. Chem., 256, 2118–2121.

    Google Scholar 

  • Rohlfs, R. J., Mathews, A. J., Carver, T. E., Olson, J. S., Springer, B. A., Egeberg, K. D., and Sligar, S. G. (1990) The Effects of Amino Acid Substitution at Position E7 (Residue 64) on the Kinetics of Ligand Binding to Sperm Whale Myoglobin. J. Biol. Chem., 265, 3168–3176.

    Google Scholar 

  • Rohlfs, R. J., Olson, J. S., and Gibson, Q. H. (1988) A Comparison of the Geminate Recombination Kinetics of Several Monomeric Heme Proteins. J. Biol. Chem., 263, 1803–1813.

    Google Scholar 

  • Romero-Herrera, A. E., Goodman, M., Dene, H., Bartnicki, D. E., and Mizukami, H. (1981) An Exceptional Amino Acid Replacement on the Distal Side of the Iron Atom in Proboscidean Myoglobin. J. Molec. Evolution, 17, 140–147.

    Article  Google Scholar 

  • Rose, E. J., and Hoffman, B. M. (1983) Nitric Oxide Ferrohemes: Kinetics of Formation and Photodissociation Quantum Yields. J. Am. Chem. Soc., 105, 2866–2873.

    Article  Google Scholar 

  • Rose, E. J., Venkatasubramanian, P. N., Swartz, J. C., Jones, R. D., Basolo, F., and Hoffman, B. M. (1982) Carbon Monoxide Binding Kinetics in “Capped” Porphyrin Compounds. Proc. Natl. Acad. Sci. U.S.A., 79, 5742–5745.

    Article  Google Scholar 

  • Rougée, M., and Brault, D. (1975) Influence of Trans Weak or Strong Field Ligands Upon the Affinity of Deuteroheme for Carbon Monoxide. Monoimidazoleheme as a Reference for Unconstrained Five-coordinate Hemoproteins. Biochemistry, 14, 4100–4106.

    Article  Google Scholar 

  • Roughton, F. J. W. (1954) The Equilibrium Between Carbon Monoxide and Sheep Haemoglobin at Very High Percentage Saturations. J. Physiol. (London), 126, 359–383.

    Google Scholar 

  • Safo, M. K., Gupta, G. P., Walker, F. A., and Scheidt, W. R. (1991) Models of the Cytochromes b. Control of Axial Ligand Orientation with a “Hindered” Porphyrin System. J. Am. Chem. Soc., 113, 5497–5510.

    Article  Google Scholar 

  • Safo, M. K., Gupta, G. P., Watson, C. T., Simonis, U., Walker, F. A., and Scheidt, W. R. (1992) Models of the Cytochromes b. Low-spin Bis-ligated (Porphinato)iron(III) Complexes with “Unusual” Molecular Structures and Nmr, Epr, and Mössbauer Spectra. J. Am. Chem. Soc., 114, 7066–7075.

    Article  Google Scholar 

  • Salemme, F. R. (1977) Structure and Function of Cytochromes c.Ann. Rev. Biochem., 46, 299–329.

    Article  Google Scholar 

  • Salvato, B., and Beltramini, M. (1990) Hemocyanins: Molecular Architecture, Structure and Reactivity of the Binuclear Copper Active Site. Life Chem. Rep., 8, 1–47.

    Google Scholar 

  • Saunders, B. C., Holmes-Siedel, A. G., and Stark, B. P. (Eds.) (1964) Peroxidases, Butterworths, London.

    Google Scholar 

  • Sawicki, C. A., and Gibson, Q. H. (1977) Properties of the T State of Human Oxyhemoglobin Studied by Laser Photolysis. J. Biol. Chem., 252, 7538–7547.

    Google Scholar 

  • Schappacher, M., Weiss, R., Montiel-Montoya, R., Trautwein, A., and Tabard, A. (1985) Formation of an Iron(IV)-oxo “Picket Fence” Porphyrin Derivative Via Reduction of the Ferrous Dioxygen Adduct Reaction with Carbon Dioxide. J. Am. Chem. Soc., 107, 3736–3738.

    Article  Google Scholar 

  • Schindler, S., Kuhne, T., and Elias, H. (1989) Preparation and Kinetic Investigation of Model Complexes for Hemocyanin. Proc. Conf. Coord. Chem., 12th, 313–314.

    Google Scholar 

  • Schmeisser, M., Dahmen, K., and Sartori, P. (1967) Perfluoroacyloxy Compounds of Positive Iodine. Chem. Ber., 100, 1633–1637.

    Article  Google Scholar 

  • Schonbaum, G. R., and Chance, B. (1976) Catalase, in The Enzymes, 3rd ed. (P. D. Boyer, Ed.), Academic Press, New York, 13, pp. 363–408.

    Google Scholar 

  • Schonbaum, G. R., and Lo, S. (1972) Interaction of Peroxidases with Aromatic Peracids and Alkyl Peroxides. J. Biol. Chem., 247, 3353–3560.

    Google Scholar 

  • Scott, R. A. (1989) X-ray Absorption Spectroscopic Investigations of Cytochrome c Oxidase Structure and Function. Ann. Rev. Biophys. Biophys. Chem., 18, 137–158.

    Article  Google Scholar 

  • Sessler, J. L., Johnson, M. R., Lin, T.-Y., and Creager, S. E. (1988) Quinone-substituted Monometalated Porphyrin Dimers: Models for Photoinduced Charge Separation at Fixed Orientation and Energy. J. Am. Chem. Soc., 110, 3659–3661.

    Article  Google Scholar 

  • Shaanan, B. (1983) Structure of Human Oxyhaemoglobin at 2.1 Å Resolution. J. Mol. Biol. 171, 31–59.

    Article  Google Scholar 

  • Shaanan, B. (1988) The Iron-Oxygen Bonding in Human Oxyhaemoglobin. Nature (London), 296, 683–684.

    Article  Google Scholar 

  • Shank, C. V., Ippen, E. P., and Bersohn, R. (1976) Time-resolved Spectroscopy of Hemoglobin and Its Complexes with Subpicosecond Optical Pulses. Science, 193, 50–51.

    Article  Google Scholar 

  • Shannon, P., and Bruice, T. C. (1981) A Novel P-450 Model System for the N-dealkylation Reaction. J. Am. Chem. Soc., 103, 4580–4582.

    Article  Google Scholar 

  • Sharma, V. S., Geibel, J. F., and Ranney, H. M. (1978) “Tension” on Heme by the Proximal Base and Ligand Reactivity: Conclusions Drawn from Model Compounds for the Reaction of Hemoglobin. Proc. Natl. Acad. Sci. U.S.A., 75, 3747–3750.

    Article  Google Scholar 

  • Sharma, V. S., Schmidt, M. R., and Ranney, H. M. (1976) Dissociation of CO from Carboxy-hemoglobin. J. Biol. Chem., 251, 4267–4272.

    Google Scholar 

  • Sheldon, R., (1985) Catalytic Oxidations in Organic Synthesis. Bull. Soc. Chim. Belg., 94, 651–670.

    Article  Google Scholar 

  • Sheldon, R., and Kochi, J. K. (1981) Metal-Catalyzed Oxidations of Organic Compounds. Academic Press, New York.

    Google Scholar 

  • Sorrell, T. N. (1986) Binuclear Copper Complexes: Synthetic Models for the Active Site of Type III Copper Proteins, in Biological Inorganic Copper Chemistry (K. D. Karlin, and J. Zubieta, Eds.), Adenine Press, Guilderland, NY, 2, pp. 41–55.

    Google Scholar 

  • Sorrell, T. N. (1989) Synthetic Models for Binuclear Copper Proteins. Tetrahedron, 45, 3–68.

    Article  Google Scholar 

  • Springer, B. A., Egeberg, K. D., Sligar, S. G., Rohlfs, R. J., Mathews, A. J., and Olson, J. S. (1989) Discrimination Between Oxygen and Carbon Monoxide and Inhibition of Autooxidation by Myoglobin. J. Biol. Chem., 264, 3057–3060.

    Google Scholar 

  • St. George, R. C. C., and Pauling, L. (1951) The Combining Power of Hemoglobin for Alkyl Isocyanides, and the Nature of the Heme-Heme Interactions in Hemoglobin. Science, 114, 629–634.

    Article  Google Scholar 

  • Stayton, P. S., and Sligar, S. G. (1990) Cytochrome P-450cam Binding Surface Defined by Site-directed Mutagenesis and Electrostatic Modeling. Biochemistry, 29, 7381–7386.

    Article  Google Scholar 

  • Steinmeier, R. C., and Parkhurst, L. J. (1975) Kinetic Studies on the Five Principal Components of Normal Adult Human Hemoglobin. Biochemistry, 14, 1564–1572.

    Article  Google Scholar 

  • Stern, M. K., and Groves, J. T. (1992) Oxygen Transfer Reactions of Oxo-Manganese Porphyrins, in Manganese Redox Enzymes (V. L. Pecoraro, Ed.), Vch, New York, pp. 233–259.

    Google Scholar 

  • Stearns, R. A., and Ortiz De Montellano, P. R. (1985) Cytochrome P-450 Catalyzed Oxidation of Quadricyclane. Evidence for a Radical Cation Intermediate. J. Am. Chem. Soc., 107, 4081–4082.

    Article  Google Scholar 

  • Stryer, L. (1988) Biochemistry (3rd ed.), W. H. Freeman, New York, pp. 143–176.

    Google Scholar 

  • Stubbe, J. (1991) Dinuclear Non-heme Iron Centers: Structure and Function. Curr. Opin. Struct. Biol. 1, 788–795.

    Article  Google Scholar 

  • Stubbe, J., and Kozarich, J. W. (1987) Mechanisms of Bleomycin-induced Dna Degradation. Chem. Rev., 87, 1107–1136.

    Article  Google Scholar 

  • Suslick, K. S., and Fox, M. M. (1983) A Bis-pocket Porphyrin. J. Am. Chem. Soc., 105, 3507–3510.

    Article  Google Scholar 

  • Suslick, K. S., Fox, M. M. and Reinert, T. J. (1984) Influences on CO and O2 Binding to Iron(II) Porphyrins. J. Am. Chem. Soc., 106, 4522–4525.

    Article  Google Scholar 

  • Tabushi, I. (1988) Reductive Dioxygen Activation by Use of Artificial P-450 Systems. Coord. Chem. Rev., 86, 1–42.

    Article  Google Scholar 

  • Takano, T., Kallai, O. B., Swanson, R., and Dickerson, R. E. (1973) The Structure of FerroCytochrome c at 2.45 Å Resolution. J. Biol Chem., 248, 5234–5255.

    Google Scholar 

  • Taube, D. J., Projahn, H.-D., Van Eldik, R., Magde, D., and Traylor, T. G. (1990) Mechanism of Ligand Binding to Hemes and Hemoproteins. A High-pressure Study. J. Am. Chem. Soc., 112, 6880–6886.

    Article  Google Scholar 

  • Theorell, H. (1941) Crystalline Peroxidase. Enzymologia, 10, 250–252.

    Google Scholar 

  • Theorell, H., Ehrenberg, A., and Chance, B. (1952) Electronic Structure of the Peroxidase-Peroxide Complexes. Arch. Biochem. Biophys., 37, 237–239.

    Article  Google Scholar 

  • Thompson, J. A., and Wand, M. D. (1985) Interaction of Cytochrome P-450 with a Hydroperoxide Derived from Butylated Hydroxytoluene. J. Biol. Chem., 260, 10637–10644.

    Google Scholar 

  • Tian, Z.-Q. (1992) Mechanisms of Iron Porphyrin Catalyzed Oxidation of Alkenes and the Concomitant N -alkylhemin Formation, Doctoral dissertation, University of California, San Diego.

    Google Scholar 

  • Traylor, T. G. (1981) Synthetic Model Compounds for Hemoproteins. Acc. Chem. Res., 14, 102–109.

    Article  Google Scholar 

  • Traylor, T. G. (1989) Synthesis of Biological Active Sites, in New Aspects of Organic Chemistry I (Z. Yoshida, T. Shiba, and Y. Oshiro, Eds.), Kodansha, Tokyo, pp. 509–527.

    Google Scholar 

  • Traylor, T. G., and Berzinis, A. P. (1980) Binding of O2 and CO to Hemes and Hemoproteins. Proc. Natl. Acad. Sci. U.S.A., 77, 3171–3175.

    Article  Google Scholar 

  • Traylor, T. G., Berzinis, A., Campbell, D., Cannon, J., Lee, W., Mckinnon, D., Mincey, T., and White, D. K. (1979a) Factors Controlling Hemoprotein Reactivity as Studied with Synthetic Model Compounds, in Biochemical and Clinical Aspects of Oxygen (W. S. Caughey, Ed.), Academic Press, New York, pp. 455–476.

    Chapter  Google Scholar 

  • Traylor, T. G., Campbell, D., and Tsuchiya, S. (1979b) Cyclophane Porphyrin. 2. Models for Steric Hindrance to CO Ligation in Hemoproteins. J. Am. Chem. Soc., 101, 4748–4749.

    Article  Google Scholar 

  • Traylor, T. G., Berzinis, A. P., Cannon, J. B., Campbell, D. H., Geibel, J. F., Mincey, T., Tsuchiya, S., and White, D. K. (1980a) The Chemical Basis of Variations in Hemoglobin Reactivity, in Advances in Chemistry Series (D. Dolphin, C. McKenna, Y. Murakami, and I. Tabushi, Eds.), American Chemical Society, Washington, Dc, pp. 219–233.

    Google Scholar 

  • Traylor, T. G., Campbell, D., Tsuchiya, S., Mitchell, M., and Stynes, D. V. (1980b) Cyclophane Hemes. 3. Magnitudes of Distal Side Steric Effects in Hemes and Hemoproteins. J. Am. Chem. Soc., 102, 5939–5941.

    Article  Google Scholar 

  • Traylor, T. G., Campbell, D. H., Tsuchiya, S., Stynes, D. V., and Mitchell, M. J. (1982) Steric Effects in Hemoprotein Reactivities, in Hemoglobin and Oxygen Binding (C, Ho, Ed.), Elsevier North-Holland, Amsterdam, pp. 425–433.

    Google Scholar 

  • Traylor, T. G., Chang, C. K., Geibel, J., Berzinis, A., Mincey, T., and Cannon, J. (1979c) Syntheses and NMR Characterization of Chelated Heme Models of Hemoproteins. J. Am. Chem. Soc., 101, 6716–6731.

    Article  Google Scholar 

  • Traylor, T. G., and Ciccone, J. P. (1989) Mechanism of Reactions of Hydrogen Peroxide and Hydroperoxides with Iron(III) Porphyrins. Effects of Hydroperoxide Structure on Kinetics. J. Am. Chem. Soc., 111, 8413–8420.

    Article  Google Scholar 

  • Traylor, P. S., Dolphin, D., and Traylor, T. G. (1984) Sterically Protected Hemins with Electronegative Substituents: Efficient Catalysts for Hydroxylation and Epoxidation. J. Chem. Soc., Chem. Commun., 279–280.

    Google Scholar 

  • Traylor, T. G., Fann, W.-P., and Bandyopadhyay, D. (1989) A Common Heterolytic Mechanism for Reactions of Iodosobenzenes, Peracids, Hydroperoxides, and Hydrogen Peroxide with Iron(III) Porphyrins. J. Am. Chem., Soc., 111, 8009–8010.

    Article  Google Scholar 

  • Traylor, T. G., Hill, K. W., Fann, W.-P., Tsuchiya, S., and Dunlap, B. E. (1992a) Aliphatic Hydroxylation Catalyzed by Iron(III) Porphyrins. J. Am. Chem. Soc., 114, 1308–1312.

    Article  Google Scholar 

  • Traylor, T. G., Iamamoto, Y., and Nakano, T. (1986a) Mechanisms of Hemin-catalyzed Oxidations: Rearrangements During the Epoxidation of trans-Cyclooctene. J. Am. Chem. Soc., 108, 3529–3531.

    Article  Google Scholar 

  • Traylor, T. G., Koga, N., and Deardruff, L. A. (1985a) Structural Differentiation of CO and O2 Binding to Iron Porphyrins: Polar Pocket Effects. J. Am. Chem. Soc., 107, 6504–6510.

    Article  Google Scholar 

  • Traylor, T. G., Koga, N., Deardurff, L. A., Swepston, P. N., and Ibers, J. A. (1984a) 1,3-Adamantane-3,13-porphyrin-6,6-cyclophane: Crystal Structure of the Free Base and Steric Effects on Ligation of the Iron(II) Complex. J. Am. Chem. Soc., 106, 5132–5143.

    Article  Google Scholar 

  • Traylor, T. G., Lee, W. A., and Stynes, D. V. (1984b) Model Compound Studies Related to Peroxidases. Mechanisms of Reactions of Hemins with Peracids. J. Am. Chem. Soc., 106, 755–764.

    Article  Google Scholar 

  • Traylor, T. G., Kim, C., Richards, J., Xu, F., and Perrin, C. L. (1995) Reactions of Iron(III) Porphyrins with Oxidants: Structure-Reactivity Studies. J. Am. Chem. Soc. 117, 3468–3474.

    Article  Google Scholar 

  • Traylor, T. G., Luo, J., Simon, J. A., and Ford, P. C. (1992b) Pressureinduced Change from Activation to Diffusion Control in Fast Reactions of Carbon Monoxide with Hemes. J. Am. Chem. Soc., 114, 4340–4345.

    Article  Google Scholar 

  • Traylor, T. G., Magde, D., Luo, J., Walda, K. N., Bandyopadhyay, D., Wu, G.-Z., and Sharma, V. S. (1992d) Mechanisms of Cage Reactions: Kinetics of Combination and Diffusion after Picosecond Photolysis of Iron(II) Porphyrin Ligated Systems. J. Am. Chem. Soc., 114, 9011–9017.

    Article  Google Scholar 

  • Traylor, T. G., Magde, D., Taube, D. J., and Jongeward, K. (1987a) Geminate Recombination of Iron(II) Porphyrin with Methyl, tert-Butyl, and Tosylmethyl Isocyanide and 1-Methylimidazole. J. Am. Chem. Soc., 109, 5864–5865.

    Article  Google Scholar 

  • Traylor, T. G., Magde, D., Taube, D. J., Jongeward, K. A., Bandyopadhyay, D., Luo, J., and Walda, K. N. (1992c) Geminate Recombination of Carbon Monoxide Complexes of Hemes and Heme Proteins. J. Am. Chem. Soc., 114, 417–429.

    Article  Google Scholar 

  • Traylor, T. G., Marsters, J. C., Jr., Nakano, T., and Dunlap, B. E. (1985c) Kinetics of Iron(III) Porphyrin Catalyzed Epoxidations. J. Am. Chem. Soc., 107, 5537–5539.

    Article  Google Scholar 

  • Traylor, T. G., and Miksztal, A. R. (1987) Mechanisms of HemiN-catalyzed Epoxidations: Electron Transfer from Alkenes. J. Am. Chem. Soc., 109, 2770–2774.

    Article  Google Scholar 

  • Traylor, T. G., Mitchell, M. J., Tsuchiya, S., Campbell, D. H., Stynes, D. V., and Koga, N. (1981a) Cyclophane Hemes. 4. Steric Effects on Dioxygen and Carbon Monoxide Binding to Hemes and Heme Proteins. J. Am. Chem. Soc., 103, 5234–5236.

    Article  Google Scholar 

  • Traylor, T. G., Nakano, T., Dunlap, B. E., Traylor, P. S., and Dolphin, D. (1986b) Mechanisms of HemiN-catalyzed Alkene Epoxidation. The Effect of Catalyst on the Regiochemistry of Epoxidation. J. Am. Chem. Soc., 108, 2782–2784.

    Article  Google Scholar 

  • Traylor, T. G., Nakano, T., Miksztal, A. R., and Dunlap, B. E. (1987b) Transient Formation of N-Alkylhemins during Hemin-catalyzed Epoxidation of Norbornene. Evidence Concerning the Mechanism of Epoxidation. J. Am. Chem. Soc., 109, 3625–3632.

    Article  Google Scholar 

  • Traylor, T. G., Taube, D. J., Jongeward, K. A., and Magde, D. (1990) Steric Effects on Geminate Recombinations. J. Am. Chem. Soc., 112, 6875–6880.

    Article  Google Scholar 

  • Traylor, T. G., and Traylor, P. S. (1982) Considerations for the Design of Useful Synthetic Oxygen Carriers. Ann. Rev. Biophys. Bioeng., 11, 105–127.

    Article  Google Scholar 

  • Traylor, T. G., Tsuchiya, S., Byun, Y.-S., and Kim, C. (1993) High Yield Epoxidations with Hydrogen Peroxide and Tert-Butyl Hydroperoxide Catalyzed by Iron(III) Porphyrins: Heterolytic Cleavage of Hydroperoxides. J. Am. Chem. Soc., 115, 2775–2781.

    Article  Google Scholar 

  • Traylor, T. G., Tsuchiya, S., Campbell, D., Mitchell, M., Stynes, D., and Koga, N. (1985b) Anthracene Heme Cyclophanes. Steric Effects in Co, O2, and Rnc Binding. J. Am. Chem. Soc., 107, 604–614.

    Article  Google Scholar 

  • Traylor, T. G., White, D. K., Campbell, D. H., and Berzinis, A. P. (1981b) Electronic Effects on the Binding of Dioxygen and Carbon Monoxide to Hemes. J. Am. Chem. Soc., 103, 4932–4936.

    Article  Google Scholar 

  • Traylor, T. G., and Xu, F. (1987) A Biomimetic Model for Catalase: the Mechanisms of Reaction of Hydrogen Peroxide and Hydroperoxides with Iron(III) Porphyrins. J. Am. Chem. Soc., 109, 6201–6202.

    Article  Google Scholar 

  • Traylor, T. G., and Xu, F. (1988) Model Reactions Related to Cytochrome P-450. Effects of Alkene Structure on the Rates of Epoxide Formation. J. Am. Chem. Soc., 110, 1953–1958.

    Article  Google Scholar 

  • Traylor, T. G., and Xu, F. (1990) Mechanisms of Reactions of Iron(III) Porphyrins with Hydrogen Peroxide and Hydroperoxides: Solvent and Solvent Isotope Effects. J. Am. Chem. Soc., 112, 178–186.

    Article  Google Scholar 

  • Tsuchiya, S., and Seno, M. (1989) Novel Synthetic Method of Phenol from Benzene Catalyzed by Perfluorinated Hemin. Chem. Lett., 263–266.

    Google Scholar 

  • Tucker, P. W., Phillips, S. E. V., Perutz, M. F., Houtchens, R., and Caughey, W. S. (1978) Structure of Hemoglobins Zürich[His E7(63)β→Arg] and Sydney[Val E11(67)β→Ala] and Role of the Distal Residues in Ligand Binding. Proc. Natl. Acad. Sci. U.S.A., 75, 1076–1080.

    Article  Google Scholar 

  • Tyeklar, Z., and Karlin, K. D. (1989) Copper Dioxygen Chemistry: A Bioinorganic Challenge. Acc. Chem. Res., 22, 241–248.

    Article  Google Scholar 

  • Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I., and Rossmann, M. G. (1986) Three-dimensional Structure of Catalase from Penicillium Vitale at 2.0 Å Resolution. J. Mol. Biol., 188, 49–61.

    Article  Google Scholar 

  • Volbeda, A., and Hol, W. G. J. (1986) The Structure of the Coppercontaining Oxygen-transporting Hemocyanins from Arthropods, in Frontiers in Bioinorganic Chemistry. (A. V. Xavier, Ed.), pp. 584–593.

    Google Scholar 

  • Wagner, G. C., and Kassner, R. J. (1974) Spectroscopic Properties of Protoheme Complexes Undergoing Reversible Oxygenation. J. Am. Chem. Soc., 96, 5593–5595.

    Article  Google Scholar 

  • Waldman, S. A., and Murad, F. (1988) Biochemical Mechanisms Underlying Vascular Smooth Muscle Relaxation: The Guanylate Cyclase-cyclic Gmp System. J. Cardiovas. Pharm., 12(Suppl. 5), S115–S118.

    Google Scholar 

  • Walker, F. A., and Simonis, U. (1991) Models of the Cytochromes b. 8. Two-dimensional Nuclear Overhauser and Exchange Spectroscopy Studies of Paramagnetic “Cavity” Type (Tetra-phenylporphinato)iron(III) Complexes of Planar Ligands. J. Am. Chem. Soc., 113, 8652–8657.

    Article  Google Scholar 

  • Walter, U. (1989) Physiological Role of cGmp and cGmp-dependent Protein Kinase in the Cardiovascular System. Rev. Physiol. Biochem. Pharm., 41–88.

    Google Scholar 

  • Wang, J. H. (1958) Hemoglobin Studies. II. A Synthetic Material with Hemoglobin-like Property. J. Am. Chem. Soc., 80, 3168–3169.

    Article  Google Scholar 

  • Wang, J. H. (1962) Hemoglobin and Myoglobin, in Oxygenases (O. Hayaishi, Ed.), Academic Press, New York, pp. 469–516.

    Google Scholar 

  • Wang, J.-S., Baek, H. K., and Van Wart, H. E. (1991) High-valent Intermediates in the Reaction of N Alpha-acetyl Microperoxidase-8 with Hydrogen Peroxide: Models for Compounds 0, I and II of Horseradish Peroxidase. Biochem. Biophys. Res. Commun., 179, 1320–1324.

    Article  Google Scholar 

  • Ward, B., Wang, C., and Chang, C. K. (1981) Nonbonding Steric Effect on CO and O2 Binding to Hemes. Kinetics of Ligand Binding in Iron-copper Cofacial Diporphyrins and Strapped Hemes. J. Am. Chem. Soc., 103, 5236–5238.

    Article  Google Scholar 

  • Warme, P. K., and Hager, L. P. (1970) Heme Sulfuric Anhydrides. II. Properties of Heme Models Prepared from Mesoheme Sulfuric Anhydrides. Biochemistry, 9, 1606–1614.

    Article  Google Scholar 

  • Weschler, C. J., Anderson, D. L., and Basolo, F. (1975) Kinetics and Thermodynamics of Oxygen and Carbon Monoxide Binding to Simple Ferrous Porphyrins at Low Temperatures. J. Am. Chem. Soc., 97, 6707–6713.

    Article  Google Scholar 

  • Westrick, J. A., Peters, K. S., Ropp, J. D., and Sligar, S. G. (1990) Role of the Arginine-45 Salt Bridge in Ligand Dissociation from Sperm Whale Carboxymyoglobin as Probed by Photoacoustic Calorimetry. Biochemistry, 29, 6741–6746.

    Article  Google Scholar 

  • White, D. K., Cannon, J. B., and Traylor, T. G. (1979) A Kinetic Model for R- and T-state Hemoglobin. Flash Photolysis of Heme-Imidazole-Carbon Monoxide Mixtures. J. Am. Chem. Soc., 101, 2443–2454.

    Article  Google Scholar 

  • White, P. W. (1990) Mechanistic Studies and Selective Catalysis with Cytochrome P-450 Model Systems. Bioorg. Chem., 18, 440–456.

    Article  Google Scholar 

  • White, R. E., and Coon, M. J. (1980) Oxygen Activation by Cytochrome P-450. Ann. Rev. Biochem., 49, 315–356.

    Article  Google Scholar 

  • Whitford, D., Gao, Y., Pielak, G. J., Williams, R. J., Mclendon, G. L., and Sherman, F. (1991) The Role of the Internal Hydrogen Bond Network in First-order Protein Electron Transfer Between Saccharomyces cerevisiae Iso-1-Cytochrome c and Bovine Microsomal Cytochrome b 5. Eur. J. Biochem., 200, 359–367.

    Article  Google Scholar 

  • Wieghardt, K. (1986) Accurate Synthetic Models for the Diiron Centers in Hemerythrin, in Frontiers Bioinorg. Chem. (A. V. Xavier Ed.), VCH, New York, pp. 246–255.

    Google Scholar 

  • Wijesekera, T. P., Paine, J. B., III, and Dolphin, D. (1988) Improved Synthesis of Covalently Strapped Porphyrins. Application to Highly Deformed Porphyrin Synthesis. J. Org. Chem., 53, 1345–1352.

    Article  Google Scholar 

  • Wikström, M. (1989) Identification of the Electron Transfers in Cytochrome Oxidase That Are Coupled to Proton-pumping. Nature, 338, 776–778.

    Article  Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M. (Eds.) (1981) Cytochrome Oxidase: A Synthesis, Academic Press, New York.

    Google Scholar 

  • Wilkins, P. C., and Wilkins, R. G. (1987) The Coordination Chemistry of the Binuclear Iron Site in Hemerythrin. Coord. Chem. Rev., 79, 195–214.

    Article  Google Scholar 

  • Winkler, J. R., and Gray, H. B. (1992) Electron Transfer in Rutheniummodified Proteins. Chem. Rev., 92, 369–377.

    Article  Google Scholar 

  • Wittenberg, J. B., Appleby, C. A., and Wittenberg, B. A. (1972) The Kinetics of the Reactions of Leghemoglobin with Oxygen and Carbon Monoxide. J. Biol. Chem., 247, 527–531.

    Google Scholar 

  • Wittenberg, J. B., Noble, R. W., Wittenberg, B. A., Antonini, E., Brunori, M., and Wyman, J. (1967) Studies on the Equilibria and Kinetics of the Reactions of Peroxidase with Ligands. J. Biol. Chem., 242, 626–634.

    Google Scholar 

  • Yamaguchi, K., Watanabe, Y., and Morishima, I. (1992) Push Effect on Heterolytic O-O Bond Cleavage of Peroxoiron(III)porphyrin Adducts. Inorg. Chem., 31, 156–157.

    Article  Google Scholar 

  • Yumibe, N. P., and Thompson, J. A. (1988) Fate of Free Radicals Generated During One-electron Reductions of 4-Alkyl-1,4-Peroxyquinols by Cytochrome P-450. Chem. Res. Toxicol., 1, 385–390.

    Article  Google Scholar 

  • Zipplies, M. F., Lee, W. A., and Bruice, T. C. (1986) Influence of Hydrogen Ion Activity and General Acid-base Catalysis on the Rate of Decomposition of Hydrogen Peroxide by a Novel Nonaggregating Water-soluble Iron(III) Tetraphenylporphyrin Derivative. J. Am. Chem. Soc., 108, 4433–4445.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Traylor, T.G., Traylor, P.S. (1995). Reactions of Dioxygen and Its Reduced Forms with Heme Proteins and Model Porphyrin Complexes. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9783-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9783-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9785-4

  • Online ISBN: 978-1-4613-9783-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics