Skip to main content

Coadjoint Orbits, Spectral Curves and Darboux Coordinates

  • Conference paper

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 22))

Abstract

For generic rational coadjoint orbits in the dual \(\tilde gl(r)^{ + *}\) of the positive half of the loop algebra \(\tilde gl(r)^{ + *}\), the natural divisor coordinates associated to the eigenvector line bundles over the spectral curves project to Darboux coordinates on the Gl(r)-reduced space. The geometry of the embedding of these curves in an ambient ruled surface suggests an intrinsic definition of symplectic structure on the space of pairs (spectral curves, duals of eigenvector line bundles) based on Serre duality. It is shown that this coincides with the reduced Kostant-Kirillov structure. For all Hamiltonians generating isospectral flows, these Darboux coordinates allow one to deduce a completely separated Liouville generating function, with the corresponding canonical transformation to linearizing variables identified as the Abel map.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M., Harnad, J. and Hurtubise, J.,Isospectral H amiltonian Flows in Finite and Infinite Dimensions II. Integration of Flows, Commun. Math. Phys. (1990, in press).

    Google Scholar 

  2. ———, Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras, CRM preprint (1990).

    Google Scholar 

  3. ———, Liouville Generating Function for Isospectral Flow in Loop Algebras, CRM preprint 1652 (1990). to appear in “Integrable and Superin- tegrable Systems” (ed. B. Kupershmidt), World Scientific, Singapore (1990).

    Google Scholar 

  4. Adams, M., Hamad, J. and Previato, E., Isospectral Hamiltonian Flows in Finite and Infinite Dimensions I. Generalised Moser Systems and Moment Maps into Loop Algebras, Commun. Math. Phys. 117 (1988), 451–500.

    Article  MATH  Google Scholar 

  5. Adler, M. and van Moerbeke, P., Completely Integrable Systems, Euclidean Lie Algebras, and Curves, Adv. Math. 38 (1980), 267–317.

    Article  MATH  Google Scholar 

  6. Beauville, A., Jacobiennes des courbes spectrales et systèmes Hamiltoniens complètement integrables, Preprint (1989).

    Google Scholar 

  7. Dickey, L.A., Integrable Nonlinear Equations and Liouville’s Theorem I, II, Commun. Math. Phys. 82, 345–360; ibid. 82 (1981), 360–375.

    Google Scholar 

  8. Flaschka, H., Newell, A.C. and Ratiu, T., Kac-Moody Algebras and Soliton Equations II. Lax Equations Associated to Physica 9D (1983), p. 300.

    MathSciNet  Google Scholar 

  9. Griffiths, P. and Harris, J., “Principles of Algebraic Geometry,” Wiley, New York, 1978.

    MATH  Google Scholar 

  10. Krichever, I.M., Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Russ. Math. Surveys 32 (1980), 53–79.

    Article  Google Scholar 

  11. van Moerbeke, P. and Mumford, D., The Spectrum of Difference Operators and Algebraic Curves, Acta Math. 143 (1979), 93–154.

    Article  MathSciNet  MATH  Google Scholar 

  12. Reiman, A.G., and Semenov-Tian-Shansky, M.A., Reduction of Hamiltonian systems, Affine Lie algebras and Lax Equations I, II, Invent. Math. 54 (1979), 81–100; ibid. 63 (1981), 423–432.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Adams, M.R., Harnad, J., Hurtubise, J. (1991). Coadjoint Orbits, Spectral Curves and Darboux Coordinates. In: Ratiu, T. (eds) The Geometry of Hamiltonian Systems. Mathematical Sciences Research Institute Publications, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9725-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9725-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9727-4

  • Online ISBN: 978-1-4613-9725-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics