Connections Between Critical Points in the Collision Manifold of the Planar 3-Body Problem

  • C. Simó
  • A. Susín
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 22)

Abstract

We study the relative position of the invariant manifolds of the fixed points on the compactification of the so called non rotating triple collision manifold for the planar general three body problem. The results obtained allow to describe all the possible transition from the approach to triple collision to the escape from it. We also describe how these transitions change as a function of the masses of the three bodies in a domain of the space of masses and are completed by numerical simulations in the remainder set of masses.

Keywords

Manifold cosB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Devaney, R., Triple collision in the planar isosceles 3-body problem, Invent. Math. 60 (1980), 249–267.MathSciNetMATHGoogle Scholar
  2. 2.
    ——— Singularities in classical mechanical systems, in “Ergodic theory and Dynamical systems I, Proceedings Special Year,” Maryland 1979–80. Ed. A. Katok, Birkhausen pp. 211–333.Google Scholar
  3. 3.
    Easton, R., Regularization of vector fields by surgery, J. Differential Equations 10 (1971), 92–99.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Easton, R., Some Topology of the 3-body problem, J. Differential Equations 10 (1971), 371–379.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lemaître, G., Régularisation dans le problème des trois corps, Bull. Classe. Sci., Acad. Roy. Belg. 40 (1954), 759–767.MATHGoogle Scholar
  6. 6.
    McGehee, R., Triple collision in the collinear three body problem, Invent. Math. 27 (1974), 191–227.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Martínez, R., Simó, C., Blow up of Collapsing Binaries in the Planar Three Body Problem, Proceed. Colloque Géometrie symplectique et Mecánique, Montpellier, 1988 (to appear).Google Scholar
  8. 8.
    Moeckel, R., Orbits near triple collision in the three body problem, Indiana Univ. Math. Jour. 32 (1983), 221–240.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Moeckel, R., Chaotic Dynamics Near Triple Collision, Arch. Rat. Mechanics and Analysis 107 (1989), 37–70.MathSciNetMATHGoogle Scholar
  10. 10.
    Murnaghan, F.D., A Symmetric Reduction of the Planar Three-Body Problem, Am. J. Math. 58 (1936), 829–832.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Siegel, C., Moser, J., “Lectures on Celestial Mechanics,” Springer.Google Scholar
  12. 12.
    Simó, C., Masses for which Triple Collision is Regularizable, Celestial Mech. 21 (1980), 25–36.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    —— Analysis of triple collision in the isosceles problem, in “Classical Mechanics and Dynamical Systems,” Ed. R.L. Devaney and Z. Xitecki, Marcel Dekker, 1981, pp. 203–224.Google Scholar
  14. 14.
    Simó, C.; Martinez, R., Qualitative study of the planar isosceles three body problem, Celestial Mech. 41 (1988), 179–251.CrossRefGoogle Scholar
  15. 15.
    Stiefel, E.L.; Scheifele, G., “Linear and Regular Celestial Mechanics,” Springer.Google Scholar
  16. 16.
    Sundman, K.F., Nouvelles recherches sur le problème des trois corps, Acta Soc. Sci. Fenn. 35 (1909), 1–27.Google Scholar
  17. 17.
    Susin, A., Passages Near Triple Collision, in “Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems,” Ed. A.E. Roy. Reidel, 1988, pp. 505–513.Google Scholar
  18. 18.
    Waldvogel, J., Stable and unstable manifolds in planar triple collision, in “Instabilities in Dynamical Systems,” Ed. V. Szebehely. Reidel, 1979, pp. 263–271.Google Scholar
  19. 19.
    ——Symmetric and regularized coordinates on the plane triple collision manifold, Celestial Mech. 28 (1982), 69–82.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Whittaker, E.T., “Analytical Dynamics of Particles and Rigid Bodies,” Cambridge Univ. Press. 1980 Mathematiçs subject classifications: 70F07, 58F14Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • C. Simó
    • 1
  • A. Susín
    • 2
  1. 1.Dept. de Matemática Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  2. 2.Dept. de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations