Advertisement

Hyperbolic Actions of Rp on Poisson Manifolds

  • Jean-Paul Dufour
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 20)

Abstract

Unless otherwise explicitly stated all manifolds and mappings are C Recall that a Poisson manifold ([W]) is a manifold V with a Lie algebra structure (f,g) ↦ {f,g} on C (V) (the set of C mappings f: VR) such that
$$\{ f,gh\} = \{ f,g\} h + g\{ f,h\}$$

Keywords

Poisson Structure Jacobi Identity Zero Divisor Induction Procedure Poisson Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ch]
    Chaperon M., Géométrie différentielle et singularités de systèmes dynamiques,Astérisque 138–139 (1986), Société Math. de France.Google Scholar
  2. [D]
    Dufour J.P., Formes normales de certaines structures de Poisson,J. of Diff. Geometry (1989) (to appear).Google Scholar
  3. [G.S]
    Guillemin V.—Sternberg S., “Symplectic Techniques in physics,” Cambridge University Press, 1984.Google Scholar
  4. [R]
    Roussarie R., Modèles locaux de champs et de formes,Astérisque 30 (1975), Société Math. de France.Google Scholar
  5. [S]
    Saito K., On a generalization of De-Rham lemma,Ann. Inst. Fourier, Grenoble 26 2 (1976), 165–170.CrossRefGoogle Scholar
  6. [Sch]
    Schouten, On the differential operators of first order in tensor calculus, Convegno Intern. geom. diff., Italy (1953), Ed. Cremonese, Rome.zbMATHGoogle Scholar
  7. [Wl]
    Weinstein A., The local structure of Poisson manifolds,J. of Diff. Geometry 18 (1983).Google Scholar
  8. [W2]
    The geometry of Poisson brackets,Int. publ. of the Tokyo Uni-versity (1987).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Jean-Paul Dufour
    • 1
  1. 1.Getodim URA 1407-GDR 144Mathématiques-Université Montpellier IIMontpellier Cedex 05France

Personalised recommendations