Skip to main content

La Première Classe de Chern Comme Obstruction à la Quantification Asymptotique

  • Conference paper

Part of the Mathematical Sciences Research Institute Publications book series (MSRI,volume 20)

Résumé

Notre travail trouve son origine dans un article de Karašev et Maslov sur la quantification d’une variété symplectique générale [16]. Cet article pose de nombreux problèmes et contient plusieurs points obscurs, que nous clarifions, ce qui nous permet de répondre positivement à certaines conjectures.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-9719-9_5
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4613-9719-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. R. Abraham, J. E. Marsden, “Foundations of mechanics (2nd edition),” Benjamin-Cummings, 1978.

    Google Scholar 

  2. V. I. Arnold, “Une classe caractéristique intervenant dans les conditions de quantification in Théorie des perturbations et méthodes asymptotiques,” DunodGauthier-Villars, 1972, pp. 341–361.

    Google Scholar 

  3. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization I, Annals of Physics (1978), 61–111.

    Google Scholar 

  4. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization II, Annals of Physics (1978), 112–151.

    Google Scholar 

  5. P. Dazord, Une interprétation géométrique de la classe de Maslov,J. Math. Pures et Appl. 56 (1977), 231–250.

    MATH  MathSciNet  Google Scholar 

  6. P. Dazord, Invariants homotopiques attachés aux fibres symplectiques, Ann. Inst. Fourier, Grenoble 29, no. 2 (1979), 25–78.

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. P. Dazord, Sur la géométrie des sous-fibres et des feuilletages lagrangiens,Ann. Scient. Ec. Nor. Sup., 4ème série, t. 13 (1981), 465–480 et Erratum.

    Google Scholar 

  8. M. J. Gotay, G. M. Tuynmann, R2n is a universal symplectic manifold for reduction, Lett. Math. Phys. t. 8 (1989), 55–59.

    CrossRef  Google Scholar 

  9. A. Haefliger, Sur l’extension du groupe structural d’un espace fibre, C.R.A.S. 243 (1956), 558–560.

    MATH  MathSciNet  Google Scholar 

  10. H. Hess, On a geometric quantization sheme generalizing those of Kostant-Souriau and Czyz,Proc. Inform. Meet. on Diff. Geom. Math. in Phys. (1978), 1–35, TU Clausthal.

    Google Scholar 

  11. L. Hörmander, Fourier Integral Operators I, Acta Math. 127 (1971), 79–183.

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. on Pure and Appl. Math. 32 (1979), 359–443.

    CrossRef  MATH  Google Scholar 

  13. D. Husemoller, “Fiber Bundles,” Mac Graw-Hill, Series in Higher Mathematics, 1966.

    Google Scholar 

  14. V. P. Maslov, “Théorie des perturbations et Méthodes asymptotiques (Lascoux et Seneor Trad.),” Dunod, Gauthier-Villars, 1972.

    Google Scholar 

  15. M. V. Karasev, V. P. Maslov, Pseudo-differential operators and a canonical operator in general symplectic manifolds, Math. U.S.S.R. Izvestiya 23, no. 2 (1983). 277–305.

    CrossRef  Google Scholar 

  16. M. V. Karagev, V. P. Maslov, Asymptotic and geometric quantization, Russian Math. Surveys 39: 6 (1984), 133–205.

    CrossRef  Google Scholar 

  17. B. Kostant, Quantization and Unitary representations, I. Prequantization, Lecture Notes in Math. no. 170 (1970), 87–208.

    CrossRef  MathSciNet  Google Scholar 

  18. V. P. Maslov, V. E. Nazaïkinskii, Asymptotics for equations with singularities in the characteristics, Math. U.S.S.R., Izvestiya 19, no. 2 (1982), 315–347.

    CrossRef  MATH  Google Scholar 

  19. V. P. Maslov, V. P. Fedoriuk, “Semi-classical approximation in quantum mechanics,” Reidel, 1981.

    CrossRef  MATH  Google Scholar 

  20. J. W. Milnor, J. Stasbeff, “Lectures on characteristic classes,” ( Mimeographed notes, Princeton University ), 1957.

    Google Scholar 

  21. J. M. Souriau, “Structure des systèmes dynamiques,” Dunod, Paris, 1972.

    Google Scholar 

  22. A. Weinstein, Lectures on Symplectic Manifolds, Conference Board of Mathematical,(Regional Conference Series in Mathematics, no. 29) (1977), A.M.S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Dazord, P., Patissier, G. (1991). La Première Classe de Chern Comme Obstruction à la Quantification Asymptotique. In: Dazord, P., Weinstein, A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9719-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9719-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9721-2

  • Online ISBN: 978-1-4613-9719-9

  • eBook Packages: Springer Book Archive