Sur Quelques Questions de Géométrie Symplectique

  • Nguiffo B. Boyom
Conference paper
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 20)


This paper summarizes a talk that I gave at the Mathematical Science Research Institute (Berkeley) in June 1989. I consider G-homogeneous symplectic manifolds (M, ω) where G is a solvable Lie group. When the symplectic action G × MM is “regular” and “closed” I sketch the proof of two main results:
  1. (1)

    the manifold M has an affinely flat structure (M, D) which preserves a bilagrangian structure on (M, ω) and satisfies the condition that Dω = 0;

  2. (2)

    the symplectic manifold (M, ω) is a graded symplectic manifold.



Symplectic Manifold Localement Plate Symplectic Action Nous Allons Condition Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Abraham and J.E. Marsden, “Foundation of Mechanics,” The Benjamin Cummings Publishing Company, London.Google Scholar
  2. 2.
    C. Benson and C.S. Gordon, Topology 27 (1988), 51>3–518.Google Scholar
  3. 3.
    Bon Yao Chu, Homogeneous symplectic manifolds,Trans. Amer. Math. Soc. 197 (1974).Google Scholar
  4. 4.
    L.A. Cordero, M. Fernandez and A. Gray, Symplectic manifolds without Kähler structure, Topology 25 (1986), 375–380.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    L.A. Cordero, M. Fernandez and M. de Leon, Examples of compact non-Kähler almost Kähler manifolds, Proc. Amer. Soc. 95 (1985), 280–286.zbMATHMathSciNetGoogle Scholar
  6. 6.
    M. Fernandez and A. Gray, The Iwasawa manifold,Differential Geometry, Peniscola, 1985, Lecture Notes in Mathematics 1209 (1986), 157–159, Springer-Verlag.Google Scholar
  7. 7.
    M. Fernandez, M. Gotay and A. Gray, Four-dimensional parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209–1212.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    V. Guillemin and S. Sternberg, “Symplectic techniques in Physics,” Cambridge University Press, 1984.Google Scholar
  9. 9.
    H. Hess, Connection on symplectic manifolds and geometric quantization,Lecture notes in Math. 836 (1977),-153–166.Google Scholar
  10. 10.
    J.W. Milnor, Fundamental groups of complete affinely fiat manifolds, Advances in Math. 25 (1977), 178–187.CrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Kostant, Quantization and unitary représentation part I prequantization, Springer Lecture Notes 170 (1970), 87–208.Google Scholar
  12. 12a.
    Nguiffo B. Boyom, Variétés symplectiques affines, Manuscriptain Math. 64 (1989), 1–33.CrossRefzbMATHGoogle Scholar
  13. b Nguiffo B., Structures bilagrangiennes affines dans certaines variétés sym-plectiques,Advances in Math. (à paraître).Google Scholar
  14. c Nguiffo B., Métriques kählériennes affinement plates de certaines varités symplectiques,(preprint).Google Scholar
  15. 13.
    D. Sims and Woodhouse, Geometric quantization,Lecture Notes in Physics 53 (1976), Springer Verlag.Google Scholar
  16. 14.
    W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467–468.zbMATHMathSciNetGoogle Scholar
  17. 15.
    A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Advances in Math. 6 (1971), 329–346.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Nguiffo B. Boyom
    • 1
  1. 1.URA CNRS 1407-GDR 144 Départment de MathématiquesUniversité de Montpellier IIMontpellier Cedex 5France

Personalised recommendations