Skip to main content

Holonomy Groupoids of Generalized Foliations. II. Transverse Measures and Modular Classes

  • Conference paper
  • 487 Accesses

Part of the Mathematical Sciences Research Institute Publications book series (MSRI,volume 20)

Abstract

A generalized foliation is a foliation with singular leaves in the sense of P. Stefan [St] and P. Dazord [D]. In the preceding paper [Su], we defined notions of holonomy maps and holonomy groupoids for a generalized foliation whose singular leaves are all tractable. We continue to investigate their properties.

Keywords

  • Cohomology Class
  • Transverse Structure
  • Continuous Section
  • Transverse Measure
  • Lebesgue Measurable Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-9719-9_18
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4613-9719-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Connes, Sur la théorie non commutative de l’intégration, Lecture Notes in Math. 725, Springer-Verlag, Berlin (1979), 19–43.

    Google Scholar 

  2. A. Connes, A survey of foliations and operator algebras, Proc. Symp. in Pure Math. 38 Part 1, Amer. Math. Soc., Providence (1982), 521–628.

    Google Scholar 

  3. P. Dazord, Feuilletages a singularités, Proc. Koninklijke Nederlandse Akademie van Wetenschappen Ser. A 88 (1) (1985), 21–39.

    MathSciNet  Google Scholar 

  4. T. Fack and G. Skandalis, Sur les représentations et idéaux de la C*-algèbre d’un feulletage, J. Operator Theory 8 (1982), 95–129.

    MATH  MathSciNet  Google Scholar 

  5. C. Moore and C. Schochet, “Global Analysis on Foliated Spaces,” MSRI Publication 9, Springer-Verlag, New York, 1988.

    Google Scholar 

  6. A. Sheu, Singular foliation Ce-algebras, Proc. Amer. Math. Soc. 104 (1988), 1197–1203.

    MATH  MathSciNet  Google Scholar 

  7. H. Suzuki, Holonomy groupoids of generalized foliations, I,to appear in Hokkaido Math. J.

    Google Scholar 

  8. P. Stefan, Accessibility and foliations with singularities, Bull. Amer. Math. Soc. 80 (1974), 1142–1145.

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. S. Yamagami, Modular cohomology class of foliation and Takesaki’s duality, RIMS-417, Kyoto Univ. (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Suzuki, H. (1991). Holonomy Groupoids of Generalized Foliations. II. Transverse Measures and Modular Classes. In: Dazord, P., Weinstein, A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9719-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9719-9_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9721-2

  • Online ISBN: 978-1-4613-9719-9

  • eBook Packages: Springer Book Archive