Skip to main content

Momentum Mappings And Reduction of Poisson Actions

  • Conference paper
Symplectic Geometry, Groupoids, and Integrable Systems

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 20))

Abstract

An action σ: G × PP of a Poisson Lie group G on a Poisson manifold P is called a Poisson action if σ is a Poisson map. It is believed that Poisson actions should be used to understand the “hidden symmetries” of certain integrable systems [STS2]. If the Poisson Lie group G has the zero Poisson structure, then σ being a Poisson action is equivalent to each transformation σ g : PP for gG preserving the Poisson structure on P. In this case, if the orbit space G \ P is a smooth manifold, it has a reduced Poisson structure such that the projection map PG \ P is a Poisson map. If P is symplectic and if the action σ is generated by an equivariant momentum mapping J: Pg*, the reduction procedure of Meyer [Me] and Marsden and Weinstein [Ms-We] gives a way of describing the symplectic leaves of G \ P as the quotients P µ := G µ \J −1(µ), where µg* and G µ G is the coadjoint isotropy subgroup of µ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., Marsden, J.E., “Foundations of mechanics,” 2nd ed., Benjamin/Cummings, New York, 1978.

    MATH  Google Scholar 

  2. Bourbaki, N., “Groupes et algèbres de Lie,” Chapitres 2 et 3, Hermann, Paris, 1972.

    Google Scholar 

  3. Coste, A., Dazord, P., Weinstein, A., Groupoides symplectiques,(notes d’un cours de A. Weinstein), Publ. Dept. Math. (1987), Université Claude Bernard Lyon I.

    Google Scholar 

  4. Dazord, P., Sondaz, D., Variétés de Poisson-algébroides de Lie,Séminaire Sud-Rhodanien (1988–1/B), Publ. Univ. Claude Bernard-Lyon 1.

    Google Scholar 

  5. Dazord, P., Sondaz, D.,Groupes de Poisson affines,Proceedings of the Seminaire Sud-Rhodanien de Geometrie (1989) (to appear), Springer-MSRI series.

    Google Scholar 

  6. Drinfel’d, V.G., Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. 27 (1) (1983), 68–71.

    MATH  MathSciNet  Google Scholar 

  7. Kosmann-Schwarzbach, Y., Poisson-Drinfel’d groups,Topics in soliton theory and exactly solvable nonlinear equations, M. Ablowitz, B. Fuchsteiner and M. Kruskal, eds. (1987), 191–215, World Scientific, Singapore.

    Google Scholar 

  8. Kosmann-Schwarzbach, Y., Magri, F., Poisson-Lie groups and complete integrability, part 1, Drinfel’d bialgebras, dual extensions and their canonical representations, Annales Inst. Henri Poincaré, Série A (Physique Théorique) 49 (4) (1988), 433–460.

    Google Scholar 

  9. Lu, J.H., Weinstein, A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, Journal of Differential Geometry 31 (1990), 501–526.

    MATH  MathSciNet  Google Scholar 

  10. Lu, J.H., Multiplicative and affine Poisson structures on Lie groups, PhD thesis (1990), University of California, Berkeley.

    Google Scholar 

  11. Marsden, J., Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121–129.

    Article  MATH  MathSciNet  Google Scholar 

  12. Meyer, K.R., Symmetries and integrals in mechanics, in “Dynamical Systems,” M.N. Peixoto, ed., Academic Press, New York, 1973, pp. 259–272.

    Google Scholar 

  13. Semenov-Tian-Shansky, M.A., What is a classical r-matrix ?, Funct. Anal. Appl. 17 (4) (1983), 259–272.

    Google Scholar 

  14. Semenov-Tian-Shansky, M.A., Dressing transformations and Poisson group actions, Publ. RIMS, Kyoto University 21 (1985), 1237–1260.

    Article  MathSciNet  Google Scholar 

  15. Spivak, M., “A comprehensive introduction to differential geometry,” Vol. 1, Publish or Perish, 1970.

    Google Scholar 

  16. Weinstein, A., The local structure of Poisson manifolds, J. Diff. Geometry 18 (1983), 523–557.

    MATH  Google Scholar 

  17. Weinstein, A., Poisson geometry of the principal series and nonlinearizable structures, J. Diff. Geometry 23 (1987), 55–73.

    Google Scholar 

  18. Weinstein, A., Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (4) (1988), 705–727.

    Article  MATH  MathSciNet  Google Scholar 

  19. Weinstein, A., Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo. Sect. 1A, Math. 36 (1988), 163–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Lu, JH. (1991). Momentum Mappings And Reduction of Poisson Actions. In: Dazord, P., Weinstein, A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9719-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9719-9_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9721-2

  • Online ISBN: 978-1-4613-9719-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics