Momentum Mappings And Reduction of Poisson Actions

  • Jiang-Hua Lu
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 20)

Abstract

An action σ: G × PP of a Poisson Lie group G on a Poisson manifold P is called a Poisson action if σ is a Poisson map. It is believed that Poisson actions should be used to understand the “hidden symmetries” of certain integrable systems [STS2]. If the Poisson Lie group G has the zero Poisson structure, then σ being a Poisson action is equivalent to each transformation σ g : PP for gG preserving the Poisson structure on P. In this case, if the orbit space G \ P is a smooth manifold, it has a reduced Poisson structure such that the projection map PG \ P is a Poisson map. If P is symplectic and if the action σ is generated by an equivariant momentum mapping J: Pg*, the reduction procedure of Meyer [Me] and Marsden and Weinstein [Ms-We] gives a way of describing the symplectic leaves of G \ P as the quotients P µ := G µ \J −1 (µ), where µg* and G µ G is the coadjoint isotropy subgroup of µ.

Keywords

Manifold Soliton Alan Weinstein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ab-Ma]
    Abraham, R., Marsden, J.E., “Foundations of mechanics,” 2nd ed., Benjamin/Cummings, New York, 1978.MATHGoogle Scholar
  2. [Bo]
    Bourbaki, N., “Groupes et algèbres de Lie,” Chapitres 2 et 3, Hermann, Paris, 1972.Google Scholar
  3. [Dt-D-W]
    Coste, A., Dazord, P., Weinstein, A., Groupoides symplectiques,(notes d’un cours de A. Weinstein), Publ. Dept. Math. (1987), Université Claude Bernard Lyon I. Google Scholar
  4. [Da-Sol]
    Dazord, P., Sondaz, D., Variétés de Poisson-algébroides de Lie,Séminaire Sud-Rhodanien (1988–1/B), Publ. Univ. Claude Bernard-Lyon 1.Google Scholar
  5. [Da-So2]
    Dazord, P., Sondaz, D.,Groupes de Poisson affines,Proceedings of the Seminaire Sud-Rhodanien de Geometrie (1989) (to appear), Springer-MSRI series.Google Scholar
  6. [Dr]
    Drinfel’d, V.G., Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. 27 (1) (1983), 68–71.MATHMathSciNetGoogle Scholar
  7. [KS]
    Kosmann-Schwarzbach, Y., Poisson-Drinfel’d groups,Topics in soliton theory and exactly solvable nonlinear equations, M. Ablowitz, B. Fuchsteiner and M. Kruskal, eds. (1987), 191–215, World Scientific, Singapore.Google Scholar
  8. [KS-Ma]
    Kosmann-Schwarzbach, Y., Magri, F., Poisson-Lie groups and complete integrability, part 1, Drinfel’d bialgebras, dual extensions and their canonical representations, Annales Inst. Henri Poincaré, Série A (Physique Théorique) 49 (4) (1988), 433–460.Google Scholar
  9. [Lu-We]
    Lu, J.H., Weinstein, A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, Journal of Differential Geometry 31 (1990), 501–526.MATHMathSciNetGoogle Scholar
  10. [Lu]
    Lu, J.H., Multiplicative and affine Poisson structures on Lie groups, PhD thesis (1990), University of California, Berkeley.Google Scholar
  11. [Ms-We]
    Marsden, J., Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121–129.CrossRefMATHMathSciNetGoogle Scholar
  12. [Me]
    Meyer, K.R., Symmetries and integrals in mechanics, in “Dynamical Systems,” M.N. Peixoto, ed., Academic Press, New York, 1973, pp. 259–272.Google Scholar
  13. [STS1]
    Semenov-Tian-Shansky, M.A., What is a classical r-matrix ?, Funct. Anal. Appl. 17 (4) (1983), 259–272.Google Scholar
  14. [STS2]
    Semenov-Tian-Shansky, M.A., Dressing transformations and Poisson group actions, Publ. RIMS, Kyoto University 21 (1985), 1237–1260.CrossRefMathSciNetGoogle Scholar
  15. [Sp]
    Spivak, M., “A comprehensive introduction to differential geometry,” Vol. 1, Publish or Perish, 1970.Google Scholar
  16. [Wel]
    Weinstein, A., The local structure of Poisson manifolds, J. Diff. Geometry 18 (1983), 523–557.MATHGoogle Scholar
  17. [We2]
    Weinstein, A., Poisson geometry of the principal series and nonlinearizable structures, J. Diff. Geometry 23 (1987), 55–73.Google Scholar
  18. [We3]
    Weinstein, A., Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (4) (1988), 705–727.CrossRefMATHMathSciNetGoogle Scholar
  19. [We4]
    Weinstein, A., Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo. Sect. 1A, Math. 36 (1988), 163–167.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Jiang-Hua Lu
    • 1
  1. 1.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations