Abstract
Using Gromov theory of pseudo-holomorphic curves, we derive a pseudo-holomorphic version of the classical result of Hadamard: a holomorphic function with bounded real part is constant. It is a pleasure to thank Gilbert Hector for providing a much simpler proof of Proposition 1, Michel N’Guiffo Boyom and the referee for valuable remarks.
Keywords
- Symplectic Form
- Tubular Neighborhood
- Lagrangian Submanifold
- Symplectic Geometry
- Symmetric Hermitian Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
D. Bennequin, Problèmes elliptiques, surfaces de Riemann et structures symplectiques, Séminaire Bourbaki, Exposé No. 657, Astérique 145–146 (1987), 111–136.
A. Besse, “Manifolds, All of Whose Geodesics are Closed,” Springer-Verlag, Berlin, Heidelberg, 1978.
A. Besse, “Einstein Manifolds,” Springer-Verlag, Berlin, Heidelberg, 1987.
M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Inv. Math. 82 (1985), 307–347.
M. Gromov, Sur le groupe fondamental d’une variété Kählérienne, C.R. Acad. Sc. Paris I 304 (1989), 67–70.
S. Hildebrandt, Harmonic mappings of Riemannian manifolds, in “Harmonic Mappings and Minimal Immersions,” Springer L.N. No. 1161.
W. Klingenberg, “Closed Geodesics on Riemmanian Manifolds,” C.B.M.S. Lectures No. 53, Amer. Math. Soc., Providence, 1983.
J. Lafontaine, Equicontinuité des courbes pseudo-holomorphes: une version géométrique du lemme du Schwarz,Séminaire de Géométrie Différentielle, GETODIM, Université de Montpellier (to appear).
P. Pansu, Notes sur l’article de Gromov “Pseudo-holomorphic curves in symplectic manifolds”,preprint (1986), Ecole Polytechnique.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1991 Springer-Verlag New York, Inc.
About this paper
Cite this paper
Lafontaine, J. (1991). A Non-Linear Hadamard Theorem. In: Dazord, P., Weinstein, A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9719-9_13
Download citation
DOI: https://doi.org/10.1007/978-1-4613-9719-9_13
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4613-9721-2
Online ISBN: 978-1-4613-9719-9
eBook Packages: Springer Book Archive