Geometric Data for Triply Periodic Minimal Surfaces in Spaces of Constant Curvature

  • Konrad Polthier
Conference paper
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 17)


In this note we describe the use of geometric data for the construction of triply periodic minimal surfaces in R 3, S 3 and H 3. With a conjugate surface construction we obtain the Plateau solution of a fundamental piece for the symmetry group of the minimal surface. For some examples in R 3 a method of H. Karcher and M. Wohlgemuth has led to the Weierstraß formula.


Riemann Surface Minimal Surface Meromorphic Function Geometric Data Compact Riemann Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Callahan, D. Hoffman and W. Meeks, Embedded minimal surfaces with an infinite number of ends, Preprint, Amherst (1987).Google Scholar
  2. 2.
    H. Karcher, The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature compagnions, Preprint SFB256 (1988).Google Scholar
  3. 3.
    H. Karcher, U. Pinkall and I. Sterling, New minimal surfaces in S 3, Preprint, Max-Planck-Institut für Mathematik, Bonn (1986).Google Scholar
  4. 4.
    H. B. Lawson, Jr., Complete minimal surfaces in S 3, Ann. of Math. 92 (1970), 335–374.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    K. Polthier, Calendar, Bilder aus der Differentialgeometrie, 1989, Vieweg-Verlag (1988).Google Scholar
  6. 6.
    K. Polthier, Neue Minimalflächen in H 3, Diplomarbeit, Bonn (1989).Google Scholar
  7. 7.
    A. Schoen, Infinite periodic minimal surfaces without selfintersections, Technical Note D-5541, NASA, Cambridge, Mass. (1970).Google Scholar
  8. 8.
    B. Smyth, Stationary minimal surfaces with boundary on a simplex, Invent. Math. 76 (1984), 411–420.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    M. Wohlgemuth, Abelsche Minimalflächen, Diplomarbeit, Bonn (1988).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Konrad Polthier
    • 1
  1. 1.Department of MathematicsUniversity of BonnBonnWest Germany

Personalised recommendations