Advertisement

Symbolic Computation with Symmetric Polynomials an Extension to MACSYMA

  • Annick Valibouze
Conference paper

Abstract

We present here a package of manipulations of symmetric polynomials implemented in Franzlisp. This package, called SYM, constitutes at present an extension of the system of symbolic computation MACSYMA. It performs a few manipulations on symmetric polynomials; it can also be used for direct applications. Some algorithms extend easily to functions that are symmetric with respect to sets of variables (i.e. multi-symmetric functions); these functions will be dealt with in the present paper.

Keywords

Power Function Symmetric Function Monomial Form Direct Image Finite Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Andrews]
    1976, George E. Andrews, The theory of partitions ,Encyclopedia of Mathematics and its Applications, Vol. 2, Section Number Theory, Addison Wesley.Google Scholar
  2. [Girard]
    , 1629, Invention Nouvelle en Algèbre, Amsterdam.Google Scholar
  3. [G,L,V]
    1988, M. Giusti, D. Lazard, A. Valibouze, Symmetric polynomials and elimination ,Notes informelles de Calcul Formel IX, Prépublication du Centre de Mathématiques de l’Ecole Polytechnique, M810.0987.Google Scholar
  4. [G,L,V]
    1988, M. Giusti, D. Lazard, A. Valibouze, Algebraic transformation of polynomial equations, symmetric polynomials and elimination. Proceedings of ISSAC-88 (Roma, Italy), Springer Verlag.Google Scholar
  5. [Lascoux]
    Alain, 1984–1985. La résultante de deux polynômes ,Séminaire d’Algèbre M.P. Malliavin.Google Scholar
  6. [Lascoux, Shützenberger]
    1985, A. Lascoux, M.P. Schützenberger, Formulaire raisonné de fonctions symétriques ,L.I.T.P, U.E.R. MATHS, Paris 7, L.A. 248.Google Scholar
  7. [Macdonald]
    I.G., 1979, Symmetric functions and Hall polynomials ,Clarendon Press, Oxford.Google Scholar
  8. [V1]
    1897, A. Valibouze, Fonctions symétriques et changements de bases ,Proceedings of the European Conference on Computer Algebra EUROCAL ’87 (Leipzig, RDA), Springer-Verlag.Google Scholar
  9. [V2]
    1988, A. Valibouze, Manipulations de fonctions symétriques ,Thèse de l’Université Paris VI.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Annick Valibouze
    • 1
    • 2
  1. 1.LITPParis Cedex 05France
  2. 2.“GRECO De Calcul Formel” No 60France

Personalised recommendations