Skip to main content

Coherent Flame Description of Turbulent Premixed Ducted Flames

  • Conference paper
Turbulent Reactive Flows

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 40))

Abstract

This paper describes some aspects of our effort to analyze turbulent combustion on the basis of an extension of the coherent flame model initially proposed by Marble and Broadwell.

At this stage the model comprises a local description (flamelets) and a global representation of the turbulent flow-field including a balance equation for the mean flame area per unit volume.

The flamelets are non-adiabatic premixed strained flames, a model suggested by Libby, Linan and Williams. Complex chemistry calculations have been carried out for a large number of propane-air flames and a large data-base of flamelets is being constructed. These calculations provide consumption rates, extinction and ignition characteristics which ere used in the global turbulent calculation to model the mean reaction terms. Numerical results obtained for turbulent premixed flames stabilized in a duct are discussed.

Experiments performed on a model combustor provide distributions of the mean heat release rate. These distributions are compared with those determined numerically. This comparison indicates that the coherent flame description accounts for important features found in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G.K. (1967). An introduction to fluid mechanics. Cambridge V. Press., Cambridge.

    Google Scholar 

  • Borghi, R., and Dutoya, D. (1979). On the scales of the fluctuations in turbulent combustion. 17th Symposium (International) on Combustion, Combustion Institute, 235–244.

    Google Scholar 

  • Borghi, R. (1979). Models of turbulent combustion for numerical predictions. Prediction Methods for Turbulent Flows. Lecture Series 1979-2, Von Karman Institute, Rhode St Genese, Belgium.

    Google Scholar 

  • Borghi, R. (1985). On the structure and morphology of turbulent premixed flames. Recent Advances in the Aerospace Sciences. C. Cashi, ed. Plenum Press, New York, 117–138.

    Google Scholar 

  • Bray, K.N.C. (1980). Turbulent flows with premixed reactants. Tubulent Reacting Flows. Topics in Applied Physics Vol. 44, P.A. Libby and F.A. Williams ed. Springer Verlag, New York.

    Google Scholar 

  • Bray, K.N.C, Libby, P.A., and Moss, J.B. (1984). Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Comb. Sci. and Tech. 41, 143–172.

    Article  Google Scholar 

  • Bray, K.N.C. (1986). Methods of including realistic chemical reaction mechanisms in turbulent combustion models. Second workshop on modellinq of chemical reaction systems. Heidelberg, Aug. 1986.

    Google Scholar 

  • Broadwell, J.E., and Breidenthal, R.E. (1982). A simple model of mixing and chemical reaction in a turbulent shear layer. J. of Fluid Mech. 125, 397–410.

    Article  ADS  Google Scholar 

  • Buckmaster, J.D., and Mikolaitis, D. (1982). The premixed flame in a counterflow. Comb. Flame 47, 191–204.

    Article  Google Scholar 

  • Buckmaster, J.D., and Ludford, G.S.S. (1983). The theory of laminar flames. Cambridge University Press, Cambridge.

    Google Scholar 

  • Candel, S.M., Darabiha, N., and Esposito E. (1982). Models for a turbulent premixed dump combustor. AIAA Paper 82-1261, AIAA, New York.

    Google Scholar 

  • Carrier, G.F., Fendell, F.E., and Marble, F.E. (1975). The effect of strain rate on diffusion flames. SIAM J. of Appl. Math. 28, 463–500.

    Article  MathSciNet  MATH  Google Scholar 

  • Clavin, P., and Williams, F.A. (1982). Effects of molecular diffusion and thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 215

    Article  Google Scholar 

  • Darabiha, N. (1984). Un modèle de flamme cohérente pour la combustion prémélangée: Analyse d’un foyer turbulent à é1argissement brusque. Doctoral Thesis. Ecole Centrale des Arts et Manufactures, Châtenay-Malabry, France.

    Google Scholar 

  • Darabiha N., Candel, S.M., and Marble, F.E. (1986). The effect of strain rate on a premixed laminar flame. Comb. Flame 64, 203–217.

    Article  Google Scholar 

  • Darabiha, N., Giovangigli, V., Candel, S.M., and Smooke, M.D. (1987). Extinction of strained premixed propane-air flames with complex chemistry. Submitted to Comb. Sci. and Tech.

    Google Scholar 

  • Dixon-Lewis, G., David, T., Gaskell, P.H., Fukutani, S., Jinno, H., Miller, J.A., Kee, R.J., Smooke, M.D., Peters, N., Effelsberg, E., Warnatz, J., and Behrendt, F. (1984). Calculation of the structure and extinction limit of a methane-air counterflow diffusion flame in the forward stagnation region of a porous cylinder. Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1893.

    Google Scholar 

  • Dupoirieux, F., and Scherrer, D. (1985). Methodes numériques à convergence rapide utilises pour le calcul des écoulements reactifs. Conference on Simulation of the Combustion Phenomena, INRIA, Sophia Antipolis, France.

    Google Scholar 

  • Giovangigli, V., and Candel, S.M. (1986). Extinction limits of premixed catalysed flames in stagnation point flows. Comb. Sci. and Tech..

    Google Scholar 

  • Giovangigli, V., and Smooke, M.D. (1985). Calculation of extinction limits for premixed laminar flames in stagnation point flow. Yale Univ. Rep. ME-105-85. Submitted to J. Computet. Phys.

    Google Scholar 

  • Giovangigli, V., and Smooke, M.D. (1986). Calculation of critical points in flames. Second workshop on modelling of chemical reaction systems, Heidelberg, Aug. 1986.

    Google Scholar 

  • Giovangigli, V., and Darabiha, N. (1987). Vector computers and complex chemisry. Presented at SIAM Meeting on Numerical Combustion. San Francisco, March 1987.

    Google Scholar 

  • Giovangigli, V., and Smooke, M. (1987). Extinction limits for premixed laminar flames in a stagnation point flow. J. Comp. Phys. 68, 327–345.

    Article  ADS  MATH  Google Scholar 

  • Giovangigli, V., and Smooke, M. (1987). Extinction limits of strained premixed laminar flames with complex chemistry. Comb. Sci. and Tech., in press.

    Google Scholar 

  • Giovangigli, V., and Smooke, M. (1987). Adaptive continuation algorithms with application to combustion problems. Submitted to Appl. Numerical Methods.

    Google Scholar 

  • Jones, W.P. and Whitelaw, J.H. (1982). Calculation methodes for reacting turbulent flows: a review. Comb. Flame 48, 1–26.

    Article  Google Scholar 

  • Karagozian, A., and Marble, F.E. (1986). Study of a diffusion flame in a stretched vortex. Comb. Sci. and Tech. 45, 65.

    Article  Google Scholar 

  • Kautsky, J., and Nichols, N.K. (1980). Equidistributing meshes with constraints. SIAM J. Sci. Stat. Comput. 1, 499

    Article  MathSciNet  MATH  Google Scholar 

  • Kee, R.J., Miller, J.A., and Jefferson, T.H. (1980). CHEMKIN : A general - purpose problem - independent, transportable Fortran chemical kinetics code package.SANDIA Rep. SAND 80-8003, Sandia Lab., Livermore.

    Google Scholar 

  • Kee, R.J., Warnatz, J., and Miller, J.A. (1983). A Fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients. SANDIA Nat. Lab. Report, SAND 83-8209.

    Google Scholar 

  • Lacas, F., Zikikout, S., and Candel, S. (1987). A comparaison between calculated and experimental mean source terms in non premixed turbulent combustion. AIAA Paper 87-1782.

    Google Scholar 

  • Laverdant, A., and Candel, S.M. (1987). Numerical calculations of a diffusion flame vortex interaction. Submitted to Comb. Sci. and Tech..

    Google Scholar 

  • Laverdant, A., and Candel, S.M. (1987). Computation of diffusion and premixed flames rolled-up in vortex structures. AIAA Paper 87-1779.

    Google Scholar 

  • Law, C.K. (1984). Heat and mass transfer in combustion : fundamental concepts and analytical techniques. Progr. in Energy and Comb. Sci. 10, 295–318.

    Article  Google Scholar 

  • Libby P.A., Sivasegaram, S., and Whitelaw J.H. (1986). Premixed Combustion. Progr in. Energy and Comb. Sci. 12, 393–405.

    Article  Google Scholar 

  • Libby, P.A., and Williams, F.A. (1980). Fundamental aspects in turbulent reacting flows. Topics in Applied Physics, Vol. 44, P.A. Libby and F.A. Williams ed. Springer Verlag, New York.

    Google Scholar 

  • Libby, P.A., and Williams, F.A. (1981). Structure of laminar flamelets in premixed turbulent flames. Comb. Flame 44, 287

    Article  Google Scholar 

  • Libby, P.A., and Williams, F.A. (1983). Strained premixed laminar flames under nonadiabatic conditions. Comb. Sci. and Tech. 31, 1

    Article  Google Scholar 

  • Libby, P.A., and Williams, F.A. (1984). Strained premixed laminar flames with two reaction zones. Comb. Sci. and Tech. 37, 221

    Article  Google Scholar 

  • Libby, P.A., Linan, A., and Williams, F.A. (1983). Strained premixed laminar flames with nonunity Lewis numbers. Comb. Sci. and Tech. 34, 257–293.

    Article  Google Scholar 

  • Liew, S.K., Bray, K.N.C., and Moss, J.B. (1984). A stretched laminar flamelet model of turbulent non-premixed combustion. Comb. Flame 56, 199–213.

    Article  Google Scholar 

  • Linan, A. (1974). The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica 1, 1007.

    Article  Google Scholar 

  • Marble, F.E. (1985). Growth of a diffusion flame in the field of a vortex. Advances in Aerospace Science, C. Cashi, Ed. Plenum Press, New York, 395–413.

    Google Scholar 

  • Marble, F.E., and Broadwell, J.E. (1977). The coherent flame model for turbulent chemical reactions. Project Sguid Rep. TRW-9-PU.

    Google Scholar 

  • Marble, F.E., and Broadwell, J.E. (1979). A theoretical analysis of nitric oxide production in a methane-air turbulent diffusion flame. EPA Tech. Rep.

    Google Scholar 

  • Norton O.P. (1983). The effects of a vortex field on flame with finite reaction rates. PhD Thesis, California Inst, of Technology, Pasadena.

    Google Scholar 

  • Peters, N. (1984). Laminar diffusion flamelets model in non-premixed turbulent combustion. Progr. in Energy and Comb. Sci. 10, 319–339.

    Article  Google Scholar 

  • Peters, N. (1986). Laminar flamelet concepts in turbulent combustion. 21st Symposium (International) on Combustion.

    Google Scholar 

  • Poinsot, T.J., Trouvé, A.C., Veynante, D.P., Candel, S.M., and Esposito, E. (1987). Vortex driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292.

    Article  ADS  Google Scholar 

  • Rogg, B., Behrendt, F., and Warnatz J. (1986). Turbulent non-premixed combustion in partially premixed diffusion flamelets with detailed chemistry. 21st International Symposium on Combustion, Munich, Aug. 3–8, 1986.

    Google Scholar 

  • Smooke, M.D. (1982). Solution of burner stabilized premixed laminar flames by boundary value methods. J. Computet. Phys. 48, 72.

    Article  ADS  MATH  Google Scholar 

  • Smooke, M.D., Puri, I.K., and Seshadri, K. (1986). A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. Yale Univ. Rep. ME-101-86.

    Google Scholar 

  • Spalding, D.B. (1978). The influence of laminar transport and chemical kinetics on the time mean reaction rate in a turbulent flame. Seventeenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 431

    Google Scholar 

  • Tsuji, H. (1982). Proqr. in Energy and Comb. Sci. 8, 93.

    Article  MathSciNet  Google Scholar 

  • Veynante, D., Candel, S.M., and Martin, J.P. (1986). Coherent flame modelling of chemical reaction in a turbulent mixing layer. Second workshop on modelling of chemical reaction systems, Heidelberg, Aug. 1986.

    Google Scholar 

  • Warnatz, J. (1983). The mechanism of high temperature combustion of propane and butane. Comb. Sci. and Tech. 34 177–200.

    Article  Google Scholar 

  • Warnatz, J. (1985). Private communication.

    Google Scholar 

  • Williams, F.A. (1975). A review of some theoretical combustions of turbulent flame structure AGARD Conf. Proc. 164, p. II 1.1.

    Google Scholar 

  • Williams, F.A. (1985). Combustion theory. 2nd ed. Benjamin/Cummings, Menlo Park.

    Google Scholar 

  • Zukoski, E.E., and Marble F.E. (1955). The role of wake transition in the process of flame stabilization on bluff bodies. Comb. Research and Rev., Butterworths Scientific Publications, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Darabiha, N., Giovangigli, V., Trouvé, A., Candel, S.M., Esposito, E. (1989). Coherent Flame Description of Turbulent Premixed Ducted Flames. In: Borghi, R., Murthy, S.N.B. (eds) Turbulent Reactive Flows. Lecture Notes in Engineering, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9631-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9631-4_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96887-2

  • Online ISBN: 978-1-4613-9631-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics