Direct Numerical Simulation and Simple Closure Theory for a Chemical Reaction in Homogeneous Turbulence

  • Andy D. Leonard
  • James C. Hill
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 40)


The direct numerical simulation of turbulent flows serves as a useful test of simple closure theories, since one can examine the dynamics of the concentration and veloCity fields in more detail than in laboratory experiments and learn how the interaction of turbulent motion and molecular diffusion affects the overall reaction rate. A brief review of the most popular methods available for full turbulence simulations is presented, and a demonstration of the usefulness of direct numerical simulation is given for simple single-point closure theories (viz., those of Toor and of Patterson) applied to the irreversible, second-order chemical reaction of initially unmixed reactants.


Reaction Zone Direct Numerical Simulation Moment Equation Scalar Dissipation Pseudospectral Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. A., Tannehill, J. C. and Pletcher, R. H. (1984). Computational Fluid Mechanics and Heat Transfer. McGraw-Hill: New York.MATHGoogle Scholar
  2. Ashurst, W. T., Peters, N. and Smooke, M. D. (1986). Numerical simulation of turbulent flame structure with non-unity Lewis number, Combust. Sci. Tech. 53, 339–375.CrossRefGoogle Scholar
  3. Bilger, R. W. (1980). Turbulent flows with nonpremixed reactants. In Libby, P. A. and Williams, F. A. (eds.) Turbulent Reacting Flows, Topics in Applied Physics, 44, Springer-Verlag: Berlin, pp. 65–113.Google Scholar
  4. Boris, J. P. and Book, D. L. (1976). Solution of the continuity equation by the method of flux-corrected transport, Methods in Computational Physics 16, 85–129.Google Scholar
  5. Corrsin, S. (1964). The isotropic turbulent mixer: Part II. Arbitrary Schmidt number, AIChE J. 10, 870–877.CrossRefGoogle Scholar
  6. Eswaran, V. and O’Brien, E. E. (1987). Chemically reacting scalars in homogeneous, isotropic, turbulent flows. Submitted for publication.Google Scholar
  7. Eswaran, V. and Pope, S. B. (1987). Direct numerical simulations of the turbulent mixing of a passive scalar. Fluid Dynamics and Aerodynamics Report FDA-87-12. Cornell University: Ithaca, New York.Google Scholar
  8. Feiereisen, W. J., Reynolds, W. C. and Ferziger, J. H. (1981). Numerical simulation of a compressible, homogeneous turbulent shear flow. Dept. Mech. Engng. Rep. TF-13, Stanford University: Stanford, California.Google Scholar
  9. Fujiwara, T., Taki, S. and Arashi, K. (1986). Numerical analysis of a reacting flow in H2/O2 rocket combustor. Part 1: Analysis of turbulent shear flow, AIAA Paper 86-0528.Google Scholar
  10. Ghoniem, A. F. and Givi, P. (1987). Vortex-scalar element calculations of a diffusion flame, AIAA Paper 87-0225.Google Scholar
  11. Givi, P. and McMurtry, P. A. (1987). Non-premixed simple reaction in homogeneous turbulence: Direct numerical simulation, AIChE J. To be pubished.Google Scholar
  12. Gotlieb, D. and Orzsag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM: Philadelphia. Hesselink, L. (1988). Ann. Rev. Fluid Mech., to appear.Google Scholar
  13. Hill, J. C. (1976). Homogeneous turbulent mixing with chemical reaction, Ann. Rev. Fluid Mech. 8, 135–161.ADSCrossRefGoogle Scholar
  14. Hussaini, M. Y., Salas, M. D. and Zang, T. A. (1985). Spectral methods for inviscid, compressible flows. In Habashi, W. G. (ed.) Advances in Computational Iranson-ics. Pineridge: Swansea, Wales, pp. 875 912.Google Scholar
  15. Hussaini, M. Y. and Zang, T. A. (1987). Spectral methods in fluid dynamics, Ann. Rev. Fluid Mech. 19, 339–367.ADSCrossRefGoogle Scholar
  16. Jou, W.-H. and Riley, J. J. (1987). On direct numerical simulations of turbulent reacting flows, AIAA Paper 87-1321.Google Scholar
  17. Kerr, R.M. (1985). Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence, J. Fluid Mech. 153, 31–58.ADSMATHCrossRefGoogle Scholar
  18. Korczak, K. Z. and Patera, A. T. (1986). An isoparametric spectral-element method for solution of the Navier-Stokes equations in complex geometry, J. Comp. Phys. 62, 361–382.MathSciNetADSMATHCrossRefGoogle Scholar
  19. Kosály, G. (1987). Non-premixed simple reaction in homogeneous turbulence, AIChE J. 33, 1998–2002.CrossRefGoogle Scholar
  20. Leonard, A. (1985). Computing three-dimensional incompressible flows, Ann. Rev. Fluid Mech. 17, 523–559.ADSCrossRefGoogle Scholar
  21. Leonard, A. D. and Hill, J. C. (1986). Direct simulation of turbulent mixing with irreversible chemical reaction, Proc. World Congress III of Chem. Eng., 4, 177–80.Google Scholar
  22. Leonard, A. D. and Hill, J. C. (1987a). A simple chemical reaction in numerically simulated homogeneous turbulence, AIAA Paper 87-0134.Google Scholar
  23. Leonard, A. D. and Hill, J. C. (1987b). Direct numerical simulation of turbulent flows with chemical reaction. Second Nobeyama Workshop on Fluid Dynamics and Supercomputers. Nobeyama, Japan.Google Scholar
  24. Lowery, P. S., Reynolds, W. C. and Mansour, N. N. (1987). Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer, AIAA Paper 87-0132.Google Scholar
  25. McMurtry, P. A., Jou, W.-H., Riley, J. J. and Metcalfe, R. W. (1986). Direct numerical simulations of a reacting mixing layer with chemical heat release, AIAA J. 24 962–970.ADSCrossRefGoogle Scholar
  26. O’Brien, E. E. (1986). Recent contributions to the statistical theory of chemical reactions in turbulent flows, PhysicoChem. Hydrodyn. 7, 1–15.MathSciNetADSGoogle Scholar
  27. Oran, E. S. and Boris, J. P. (1987). Numerical simulation of reactive flow. Elsevier, New York.MATHGoogle Scholar
  28. Oran, E., Young, T. R., Boris, J. P., Picone, J. M. and Edwards, D. H. (1982). A study of detonation structure: The formation of unreacted gas pockets, Nineteenth Symp. (Int.) Combust., 573–582.Google Scholar
  29. Orszag, S. A. (1972). Comparison of pseudospectral and spectral approximations, Studies Appl. Math. 51, 253–259.MATHGoogle Scholar
  30. Patterson, G. K. (1981). Application of turbulence fundamentals to reactor modelling and scaleup, Chem. Eng. Commun. 8, 25–52.CrossRefGoogle Scholar
  31. Peyret, R. and Taylor, T. D. (1983). Computational Methods for Fluid Flow. Springer-Verlag: New York.MATHGoogle Scholar
  32. Picart, J., Borghi, R. and Chollet, J. P. (1987). Numerical simulation of turbulent reactive flows. Sixth Symposium on Turbulent Shear Flows, Toulouse, France.Google Scholar
  33. Pope, S. B. (1985). Pdf methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11, 119–192.MathSciNetADSCrossRefGoogle Scholar
  34. Riley, J. J., Metcalfe, R. W. and Orszag, S. A. (1986). Direct numerical simulations of chemically reacting turbulent mixing layers, Phys. Fluids 29, 406–422.ADSCrossRefGoogle Scholar
  35. Rogallo, R. S. (1981). Numerical experiments in homogeneous turbulence. NASA TM 81315.Google Scholar
  36. Taki, S. and Fujiwara, T. (1981). Numerical simulation of triple shock behavior of gaseous detonation, Eighteenth Symp. (Int.) on Combust., 1671–1681.Google Scholar
  37. Toor, H. L. (1969). Turbulent mixing of two species with and without chemical reactions, Ind. Eng. Chem. Fundam. 8, 655–659.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Andy D. Leonard
    • 1
  • James C. Hill
    • 1
  1. 1.Department of Chemical EngineeringIowa State UniversityAmesUSA

Personalised recommendations