# Regularity of Flows in Porous Media: A Survey

## Abstract

Much of the early development of the classical theory of linear partial differential equations was guided by the very detailed body of knowledge accumulated over the years concerning the three model equations: Laplace’s equation, the wave equation, and the equation of heat conduction. Indeed, many of us were indoctrinated at the outset of our research careers with maxims such as: “Whatever is true for Laplace’s equation is also true, (*sotto voce*) with appropriate modifications, for any elliptic equation.” In this lecture I want to describe some of the results of a continuing project, involving a fairly large number of analyists, concerning a model equation for a class of nonlinear diffusion problems, the so-called porous medium equation. Although the theory is certainly not complete, its general outlines are quite clear and a coherent summary is possible.

### Keywords

Permeability Porosity Filtration Assure Expense## Preview

Unable to display preview. Download preview PDF.

### References

- [A]S. Angenent,
*Analyticity of the interface of the porous medium equation after the waiting time*, Proc. Amer. Math. Soc, to appear.Google Scholar - [Ar1]D. G. Aronson,
*Regularity properties of flows through porous media*, SIAM J. Appl. Math.**17**(1969), 461–467.CrossRefMATHMathSciNetGoogle Scholar - [Ar2]D. G. Aronson,
*Regularity properties of flows through porous media: a counterexample*, SIAM J. Appl. Math.**19**(1970), 299–307.CrossRefMATHMathSciNetGoogle Scholar - [Ar3]D. G. Aronson,
*Regularity properties of flows through porous media: the interface*, Arch. Rat. Mech. Anal.**37**(1970), 1–10.CrossRefMATHMathSciNetGoogle Scholar - [Ar4]D. G. Aronson,
*The porous medium equation*, in “Nonlinear Diffusion Problems,” (A. Fasano and M. Primicerio, eds.), Springer Lecture Notes in Math, vol. 1224, Springer-Verlag, 1986.Google Scholar - [AB]D. G. Aronson and Ph. Benilan,
*Regularité des solutions de l’équation des milieux poreux dans*ℝ^{N}, C.R. Acad. Sci. Paris**288**(1979), 103–105.MATHMathSciNetGoogle Scholar - [AC1]D. G. Aronson and L. A. Caffarelli,
*The initial trace of a solution of the porous medium equation*, Trans. Amer. Math. Soc.**280**(1983), 351–366.Google Scholar - [AC2]D. G. Aronson and L. A. Caffarelli,
*Optimal regularity for one-dimensional porous medium flow*, Revista Matemática Iberoam.**2**(1986), 357–366.MATHMathSciNetGoogle Scholar - [ACV]D. G. Aronson, L. A. Caffarelli and J. L. Vasquez,
*Interfaces with a corner point in one-dimensional porous medium flow*, Comm. Pure Appl. Math.**38**(1985), 375–404.CrossRefMATHMathSciNetGoogle Scholar - [AG]D. G. Aronson and J. Graveleau, in preparation.Google Scholar
- [AV]D. G. Aronson and J. L. Vasquez,
*Eventual C*^{∞}*-regularity and concavity for flows in one-dimensional porous media*, Arch. Rat. Mech. Anal.**99**(1987), 329–348.CrossRefGoogle Scholar - [B]G. I. Barenblatt,
*On some unsteady motions of a liquid or a gas in a porous medium*, Prikl. Mat. Meh.**16**(1952), 67–78.MATHMathSciNetGoogle Scholar - [Be]Ph. Benilan,
*A strong regularity L*^{p}*for solutions of the porous media equation*, in “Contributions to Nonlinear Partial Differential Equations,” (C. Bardos, A. Damlamian, J. I. Diaz and J. Hernandez, eds.), Research Notes in Math., vol. 89, Pitman, London, 1983, pp. 39–58.Google Scholar - [BCP]Ph. Benilan, M. G. Crandall, and M. Pierre,
*Solutions of the porous medium equation in**ℝ*^{N}*under optimal conditions on initial values*, Indiana Univ. Math. J.**33**(1984), 51–87.CrossRefMATHMathSciNetGoogle Scholar - [BH]J. G. Berryman and C. J. Holland,
*Stability of the separable solution for fast diffusion*, Arch. Rat. Mech. Anal.**74**(1980), 279–288.MathSciNetGoogle Scholar - [BP]M. Bertsch and L. A. Peletier, “Porous medium type equations: An overview,” Mathmatical Institute, University of Leiden, Report No. 7, 1983.Google Scholar
- [CF1]L. A. Caffarelli and A. Friedman,
*Regularity of the free boundary for the one-dimensional flow of gas in a porous medium*, Amer. J. Math.**101**(1979), 1193–1281.Google Scholar - [CF2]L. A. Caffarelli and A. Friedman,
*Regularity of the free boundary of a gas flow in an n-dimensional porous medium*, Indiana Univ. Math. J.**29**(1980), 361–391.CrossRefMATHMathSciNetGoogle Scholar - [CVW]L. A. Caffarelli, J. L. Vasquez and N. I. Wolanski,
*Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation*, Indiana U. Math. J.**36**(1987), 373–401.CrossRefGoogle Scholar - [CW]L. A. Caffarelli and N. I. Wolanski,
*The differentiability of the free boundary for the N-dimensional porous medium equation*, preprint.Google Scholar - [D]H. Darcy, “Les Fontaines Publiques de la Ville de Dijon,” V. Dalmont, Paris, 1856, pp. 305–311.Google Scholar
- [DK1]B. E. J. Dahlberg and C. E. Kenig,
*Nonnegative solutions of the porous medium equation*, Comm. PDE**9**(1984), 409–437.Google Scholar - [G]B. H. Gilding,
*Hölder continuity of solutions of parabolic equations*, J. London Math. Soc.**13**(1976), 103–106.CrossRefMATHMathSciNetGoogle Scholar - [Gr]J. Graveleau, personal communication.Google Scholar
- [GM]M. E. Gurtin and R. C. MacCamy,
*On the diffusion of biological populations*, Math. Biosc.**33**(1977), 35–49.CrossRefMATHMathSciNetGoogle Scholar - [HP]M. A. Herrero and M. Pierre,
*The Cauchy problem for u*_{t}*=*∆*u*^{m}*when*0 <*m*< 1, Trans. Amer. Math. Soc.**291**(1985), 145–158.MATHMathSciNetGoogle Scholar - [HK]K. Höllig and H. O. Kreiss,
*C*^{∞}*-regularity for the porous medium equation*, Math. Z.**192**(1986), 217–224.CrossRefMATHMathSciNetGoogle Scholar - [K]B. F. Knerr,
*The porous medium equation in one dimension*, Trans. Amer. Math. Soc.**234**(1977), 381–415.CrossRefMATHMathSciNetGoogle Scholar - [Kr]S. N. Kruzhkov,
*Results on the character of the regularity of solutions of parabolic equations and some of their applications*, Math. Notes**6**(1969), 517–523.CrossRefGoogle Scholar - [LP]E. W. Larsen and G. C. Pomraning,
*Asymptotic analysis of nonlinear Marshak waves*, SIAM J. Appl. Math.**39**(1980), 201–212.CrossRefMATHMathSciNetGoogle Scholar - [LSU]O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’ceva, “Linear and Quasilinear Equations of Parabolic Type,” Transl. Math. Monographs 23, Amer. Math. Soc, Providence, 1968.Google Scholar
- [O]O. A. Oleinik, “Mathematical Problems of Boundary Layer Theory,” Lecture Notes, Departemtn of Mathematics, University of Minnesota, 1969.MATHGoogle Scholar
- [OKC]O. A. Oleinik, A. S. Kalashnikov and Chzhou Yui-Lin,
*The Cauchy problem and boundary problems for equations of the type of unsteady filtration*, Izv. Akad. Nauk SSSR Ser. Mat.**22**(1958), 667–704.MATHMathSciNetGoogle Scholar - [V]J. L. Vasquez,
*The interface of one-dimensional flows in porous media*, Trans. Amer. Math. Soc.**285**(1984), 717–737.MathSciNetGoogle Scholar