Skip to main content

Solutions of Diffusion Equations in Channel Domains

  • Conference paper
Nonlinear Diffusion Equations and Their Equilibrium States I

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 12))

  • 313 Accesses

Abstract

We will discuss the existence and the qualitative properties of solutions of the problem

$$\begin{gathered} \Delta u + f(u)\; = \;0{\text{ }}in{\text{ }}\Omega \hfill \\ {\text{ }}u = \;0{\text{ }}on{\text{ }}\partial \Omega ; \hfill \\ \end{gathered}$$

here Ω is a channel of the form

$$\Omega \; = \;\{ {\mkern 1mu} (x,{\mkern 1mu} y)\;:\;x\; \in \;{\mathbb{R}^1},\quad 0 < y < \;\emptyset (x)\;\} .$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amick, C. and L.E. Fraenkel, Steady solutions of the Navier-Stokes equations representing plane flow in channels of variaous types. Acta Math. 144 (1980), 83–152.

    Article  MATH  MathSciNet  Google Scholar 

  2. Fife, P., Mathematical Aspects of Reacting and Diffusing Systems, Springer Lecture Notes in Math. (1979).

    MATH  Google Scholar 

  3. Fife, P. and J.B. McLeod, The approach of solutions on nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal. (1975).

    Google Scholar 

  4. Fife, P. and L.A. Peletier, Clines by variables selection and migration, Proc. R. Soc. Lond. B 214 (1981), 99–123.

    Article  Google Scholar 

  5. Fife, P. and L.A. Peletier, Nonlinear diffusion in population genetics, Arch. Rat. Mech. Anal. 64 (1977), 93–109.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gardner, R., Existence of multidimensional travelling wave solutions of an initial-boundary value problem, J. Diff. Eq. 61 (1986), 335–379.

    Article  MATH  Google Scholar 

  7. Henry, D., Geometric theory of semilinear parabolic equations, Springer Lecture Notes in Math. 840 (1981).

    MATH  Google Scholar 

  8. Schaaf, R., A class of Hamiltonian systems with increasing periods, J. Reine Angew. Math. 363 (1985), 96–109.

    Article  MATH  MathSciNet  Google Scholar 

  9. Smoller, J. and A. Wasserman, Global bifurcation of steady state solutions, J. Diff. Eq. 39 (1981), 269–290.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Gardner, R. (1988). Solutions of Diffusion Equations in Channel Domains. In: Ni, WM., Peletier, L.A., Serrin, J. (eds) Nonlinear Diffusion Equations and Their Equilibrium States I. Mathematical Sciences Research Institute Publications, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9605-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9605-5_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9607-9

  • Online ISBN: 978-1-4613-9605-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics