Automorphisms of rational maps

  • Curt McMullen
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 10)

Abstract

Let f(z) be a rational map, Aut(f) the finite group of Möbius transformations commuting with f. We study the question: when can two kinds of more flexible automorphisms of the dynamics of f be realized in Aut(g) for some deformation g of f?

Keywords

Manifold Assure Mane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    W. Abikoff. Some remarks on Kleinian groups. In Advances in the Theory of Riemann Surfaces, Annals of Math Studies 66 (1971), p. 1–6.MathSciNetGoogle Scholar
  2. [AM]
    W. Abikoff, B. Maskit. Geometric decompositions of Kleinian groups. Amer. J. Math. 99 (1977), p. 687–698.CrossRefMATHMathSciNetGoogle Scholar
  3. [AB]
    L. Ahlfors, L. Bers. Riemann’s mapping theorem for variable metrics. Annals of Math. 72 (1960), pp. 385–404.CrossRefMATHMathSciNetGoogle Scholar
  4. [BR]
    L. Bers, H. Royden. Holomorphic families of injections. To appear, Acta Mathematica.Google Scholar
  5. [B1]
    P. Blanchard. Complex analytic dynamics on the Riemann sphere. Bull. AMS 11 (1984), pp. 85–141.CrossRefMATHMathSciNetGoogle Scholar
  6. [DE]
    A. Douady, C. Earle. Conformally natural extensions of homemorphisms of the circle. Acta Mathematica 157 (1986), pp. 23–48.CrossRefMATHMathSciNetGoogle Scholar
  7. [DHl]
    A. Douady, J. Hubbard. On the dynamics of polynomial-like mappings. Ann. sci. Ec. Norm. Sup. 18 (1985), pp. 287–344.MATHMathSciNetGoogle Scholar
  8. [DH2]
    A. Douady, J. Hubbard. A proof of Thurston’s topological characterization of rational maps. Preprint.Google Scholar
  9. [H]
    M. Herman. Exemples de fractions rationelles ayant une orbite dense sur la sphere de Riemann. Bull. Soc.Math. de France 112 (1984), pp. 93–142.MATHMathSciNetGoogle Scholar
  10. [J]
    K. Johansson. On the mapping class group of simple 3 manifolds. In Topology of Low Dimensional Manifolds, Springer-Verlag Lecture Notes 722 (1979), pp.48–66.Google Scholar
  11. [Ker]
    S. Kerckhoff. The Nielsen realization problem. Annals of Mathematics 117 (1983), pp. 235–265.CrossRefMATHMathSciNetGoogle Scholar
  12. [Kra]
    I. Kra. Deformation spaces. In A Crash Course on Kleinian Groups, Springer-Verlag Lecture Notes 400 (1974), pp. 48–70.MathSciNetGoogle Scholar
  13. [L]
    S. Lattes. Sur 1’iteration des substitutions rationelles et les fonctions de Poin caré’. CRAS Paris 166 (1918), pp. 26–28.MATHGoogle Scholar
  14. [Ma]
    R. Mañe′. Instability of Herman rings. Inv. Math. 81 (1985), pp. 459–472.CrossRefGoogle Scholar
  15. [MSS]
    R. Mañe′, P. Sad, D. Sullivan. On the dynamics of rational maps. Ann. sci. Ec. Norm. Sup. t. 16 (1983), pp. 193–217.Google Scholar
  16. [Mskt]
    B. Maskit. Intersection of component subgroups of Kleinian groups. In Discontinuous Groups and Riemann Surfaces, Annals of Math Studies 79 (1974), pp. 349–367.MathSciNetGoogle Scholar
  17. [Mc1]
    C. McMullen. Families of rational maps and iterative root-finding algorithms. To appear, Annals of Mathematics.Google Scholar
  18. [Mc2]
    C. McMullen. Braiding of the attractor and the failure of iterative algorithms. MSRI Preprint, 1986.Google Scholar
  19. [MB]
    J. Morgan, H. Bass (editors). The Smith Conjecture. Academic Press (1984).MATHGoogle Scholar
  20. [Shub]
    M. Shub. Expanding maps. In Global Analysis, AMS Proc. of Symp. XIV (1970), pp. 273–276.MathSciNetGoogle Scholar
  21. [Str]
    K. Strebel. On quasiconformal mappings of open Riemann surfaces. Comm. Math. Helv. 53 (1978), pp. 301–321.CrossRefMATHMathSciNetGoogle Scholar
  22. [Sul1]
    D. Sullivan. Conformal dynamical systems. In Geometric Dynamics, Springer-Verlag Lecture Notes 1007 (1983), pp. 725–752.Google Scholar
  23. [Sul2]
    D. Sullivan. Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains. Annals of Math. 122 (1985), pp. 401–418.CrossRefMATHGoogle Scholar
  24. [Sul3]
    D. Sullivan. Quasiconformal homeomorphisms and dynamics III: Topological conjugacy classes of analytic endomorphisms. Preprint.Google Scholar
  25. [ST]
    D. Sullivan, W. Thurston. Extending holomorphic motions. To appear, Acta Mathematica.Google Scholar
  26. [Th]
    W. Thurston. The Geometry and Topology of Three Manifolds. Lecture notes, Princeton University (1979).Google Scholar
  27. [W]
    G. Whyburn. Analytic Topology. AMS Coll. Publ. 28 (1942).Google Scholar
  28. [Z]
    H. Zieschang. Finite Groups of Mapping Classes of Surfaces. Springer-Verlag Lecture Notes 875 (1981).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Curt McMullen
    • 1
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations