Skip to main content

Hyperbolic Groups

  • Chapter

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 8))

Abstract

Let us start with three equivalent definitions of hyperbolic groups. First observe that for every finitely presented group Γ there exists a smooth bounded (i.e. bounded by a smooth hypersurface) connected domain V ⊂ ℝn for every n ≥ 5. such that the fundamental group π1(V) is isomorphic to Γ. A standard example of such a V is obtained as follows. Fix a finite presentation of Γ and let P be the 2-dimensional cell complex whose 1-cells correspond in the usual way to the generators and the 2-cells to the relations in Γ, such that π1(P) = Γ. Then embed P into ℝ5 and take a regular neighborhood of P ⊂ ℝ5 for V.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Alexandrov, A theorem on triangles in a metric space and some of its applications, Trudy Math. Inst. Steks. 38 (1951), 5–23.

    Google Scholar 

  2. N. Bourbaki, XXXIV, Groups et algébres de Lie, Part 2, Hermann, Paris, 1968.

    Google Scholar 

  3. R. Bowen, Markov partitions for axiom A diffeomorphisms, Am. J. Math. 92 (1970), 725–747.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Ballman, M. Gromov and V. Schroeder, Manifolds of non-positive curvature, Progress in Math., Vol 61, Birkhäuser, 1985.

    Google Scholar 

  5. Yu. Burago and V. Zalgaller, Geometric Inequalities, Egrebn. der Math., Springer-Verlag, to appear.

    Google Scholar 

  6. J.W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geometr. Dedicata, to appear.

    Google Scholar 

  7. J. Cheeger and M. Gromov, L2-cohomology and group cohomology, Topology, 25:2, (1986), 189–217.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (2), (1983), 293–325.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Dress, Trees, extensions of metric spaces and the cohomological dimension of certain groups, Preprint, Bielefeld.

    Google Scholar 

  10. W.J. Floyd, Group completions and Kleinian groups, Ph.D. Thesis, Princeton, 1978.

    Google Scholar 

  11. D. Fried, Finitely presented dynamical systems, preprint, 1986.

    Google Scholar 

  12. H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. in Pure Math. XXVI (1973), 193–233.

    MathSciNet  Google Scholar 

  13. F. Gehring, G. Martin, Discrete quasiconformal groups, Proc. Lond. Math. Soc, to appear.

    Google Scholar 

  14. M. Gromov, Hyperbolic manifolds, groups and actions, In. Riemannian surfaces and related topics, Ann. Math. Studies 97 (1981), 183–215.

    MathSciNet  Google Scholar 

  15. M. Gromov, Hyperbolic manifolds, Volume and bounded cohomology, Publ. Math. IHES 56 (1983), 213–307.

    MathSciNet  Google Scholar 

  16. M. Gromov, Hyperbolic manifolds, Filling Riemannian manifolds, Journ. Diff. Geom. 18 (1983), 1–147.

    MathSciNet  MATH  Google Scholar 

  17. M. Gromov, Hyperbolic manifolds, Hyperbolic manifolds according to Thurston and Jorgensen, Springer Lect. Notes 842 (1981), 40–53.

    MathSciNet  Google Scholar 

  18. M. Gromov, Hyperbolic manifolds, Infinite groups as geometric objects, Proc. ICM Waszawa, Vol 1 (1984), 385–391.

    MathSciNet  Google Scholar 

  19. M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, to appear in Inv. Math.

    Google Scholar 

  20. D. Kazdan, On a connection between the dual space of a group with the structure of it’s closed subgroups, Funct. An. and Applications, 1:1 (1967), 71–74.

    MathSciNet  Google Scholar 

  21. W. Klingenberg, Lectures on closed geodesics, Section 5.3, Springer-Verlag (1978), 189–200.

    Book  MATH  Google Scholar 

  22. B. Kostant, On the existence and irreducibility of certain series of representations, BAMS 75 (1969), 627–642.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Lubotzki, Group presentations, p-adic analytic groups and lattices in SL2(ℂ), Ann. Math. 118 (1983), 115–130.

    Article  Google Scholar 

  24. R.C. Lyndon and P.E. Schupp, Combinatorial group theory, Springer-Verlag (1977).

    MATH  Google Scholar 

  25. A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. Lond. Math. Soc. 3 (1971), 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Margulis, The isometry of closed manifolds of constant negative curvature with the same fundamental group, Dokl. Ak. Nauk. SSSR 192 (1970), 736–737.

    MathSciNet  Google Scholar 

  27. M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Am. Math. Soc. 26 (1924), 25–60.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Morgan and P. Shalen, Valuation, trees and degeneration of hyperbolic structures, I. Ann. Math. 120 (1984), 401–476.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.Y. Olshanski, On a geometric method in the combinatorial group theory, Proc. ICM, Warszawa, Vol 1 (1984), 415–423.

    Google Scholar 

  30. P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symmetriques, preprint.

    Google Scholar 

  31. D. Sullivan, Quasiconformal homeomorphisms and dynamics, II, Preprint IHES, 1982.

    Google Scholar 

  32. W. Thurston, Geometry and topology of 3-manifolds, Princeton, 1978.

    Google Scholar 

  33. J.L. Tits, Free subgroups of linear groups, J. Algebra 20 (1972), 250–270.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.L. Tits, On buildings and their applications, Proc. I.C.M. 1974, pp. 209–221, Vancouver.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gromov, M. (1987). Hyperbolic Groups. In: Gersten, S.M. (eds) Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9586-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9586-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9588-1

  • Online ISBN: 978-1-4613-9586-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics