Advertisement

Reducible Diagrams and Equations Over Groups

  • S. M. Gersten
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 8)

Abstract

Diagrammatic reducibility is related to the solution of equations over groups. Sufficient conditions for the reducibility of all spherical diagrams are given, unifying and generalizing work of Adian, Remmers, Lyndon, and Sieradski. Hyperbolic 2-complexes are defined and the word problem is solved for their fundamental groups.

Keywords

Conjugacy Class Word Problem Weight Test Oriented Edge Hyperbolic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    S.J. Adian, Defining relations and algorithmic problems for groups and semigroups, Proc. Steklov Inst. Math. 85 (1966).Google Scholar
  2. [2]
    I.M. Chiswell, D.J. Collins, and J. Huebschmann, Aspherical group presentations, Math Z. 178 (1981), 1–36.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D.J. Collins and J. Huebschmann, Spherical diagrams and identities among relations, Math. Ann. 261 (1983), 155–183.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Formanek, Conjugate separability in polycyclic groups, J. Algebra 42 (1976), 1–10.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    S.M. Gersten, Conservative groups, indicability and a conjecture of Howie, J. Pure Appl. Alg. 29 (1983), 59–74.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    S.M. Gersten, Nonsingular equations of small weight over groups, to appear in Proceedings of Alta Conference on Combinatorial Group Theory, Annals of Math Studies, Princeton.Google Scholar
  7. [7]
    S.M. Gersten, Products of conjugacy classes in a free group; a counterexample, to appear in Math Z.Google Scholar
  8. [8]
    M. Gerstenhaber and O.S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. USA 48 (1962), 1531–1533.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    J. Howie, How to generalize one — relator group theory, to appear in Proceedings of Alta Conference on Combinatorial Group Theory, Annals of Math Studies, Princeton.Google Scholar
  10. [10]
    J. Howie, On the asphericity of ribbon disc complements, Trans. Amer. Math. Soc. 289 (1985), 281–302.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J. Howie, On pairs of 2-complexes and systems of equations over groups, Crelle 324 (1981), 165–174.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    J. Howie, The p-adic typology on a free group: a counterexample, Math. Z. 187 (1984), 25–27.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    J. Howie, The solution of length three equations over groups, Proc. Edinburgh Math. Soc. 26:2 (1981), 165–174.MathSciNetGoogle Scholar
  14. [14]
    F. Levin, Solutions of equations over groups, Bull. Amer. Math. Soc. 68 (1982), 603–604.CrossRefGoogle Scholar
  15. [15]
    R.C. Lyndon, Problems in combinatorial group theory, to appear in Proceedings of Alta Conference on Combinatorial Group Theory, Annals of Math Studies, Princeton.Google Scholar
  16. [16]
    R.C. Lyndon and P.E. Schupp, Combinatorial group theory, Ergebnisse der Math. 89 (1977), Springer-Verlag.MATHGoogle Scholar
  17. [17]
    Ch.D. Papakyriakopoulos, Bull. Soc. Math. Grèce 22 (1943), 1–154.MathSciNetGoogle Scholar
  18. [18]
    V.N. Remeslennikov, Finite approximability of groups with respect to conjugacy, Sibirsk. Mat. Zh. 12 (1971), 1085–1099.MathSciNetGoogle Scholar
  19. [19]
    J.H. Remmers, On the geometry of semigroup presentations, Adv. in Math. 36 (1980), 283–296.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    A. Sieradski, A coloring test for asphericity, Quart. J. Math Oxford (2) 34 (1983), 97–106.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    J.R. Stallings, A graph-theoretic lemma and group embeddings, to appear in Proc. of Alta Conference on Combinatorial Group Theory, Annals of Math Studies, Princeton.Google Scholar
  22. [22]
    J.R. Stallings, Surfaces in three-manifolds and non singular equations in groups, Math Z. 184 (1983), 1–17.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    J.H.C. Whitehead, On adding relations to homotopy groups, Ann. of Math. 42 (1941), 409–428.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • S. M. Gersten
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations