Advertisement

Suggested Readings

  • Robert F. Schmidt
Part of the Springer Study Edition book series (SSE)

Abstract

The references given below are to assist the reader in further studies. In keeping with the introductory character of this book, emphasis has been placed on textbooks, monographs, and review articles. The references were chosen by the authors of the individual chapters.

Keywords

Motor Control American Physiological Society Vertebrate Central Nervous System Human Circadian Rhythm Normal Human Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Literature

General Literature

  1. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York London Toronto, pp 1–1053Google Scholar
  2. Eccles JC (1957) The physiology of nerve cells. Hopkins, Baltimore, pp 1–270Google Scholar
  3. Eccles JC (1973) The understanding of the brain. McGraw-Hill, New York St. Louis San Francisco Düsseldorf, pp 1–238Google Scholar
  4. Eccles JC (1979) The human mystery. Springer, Berlin Heidelberg New York, pp 1–255Google Scholar
  5. Eccles JC (1980) The human psyche. Springer, Berlin Heidelberg New York, pp 1–279Google Scholar
  6. Handbook of Physiology (1977/1981) Section 1: The nervous system, vol I: Cellular biology of neurons (2 books), (1977). Vol II: Motor control (2 books) (1981) American Physiological Society, BethesdaGoogle Scholar
  7. Kandel ER, Schwartz JH (eds) (1981) Principles of neural science. Elsevier, Amsterdam, pp 1–731Google Scholar
  8. Kuffler SW, Nicholls JG (1976) From neuron to brain. Sinauer, Sunderland, Mass, pp 1–486.Google Scholar
  9. McGeer PL, Eccles JC, McGeer EG (1978) Molecular neurobiology of the mammalian brain. Plenum, New York, pp 1–644Google Scholar
  10. Mountcastle VB (ed) (1980) Medical physiology, vol I, 14th edn. Mosby, Saint Louis, pp 1–948Google Scholar
  11. Ruch TC, Patton HD (eds) (1979) Physiology and biophysics. I. The brain and neural function, 20th edn. Saunders, Philadelphia, pp 1–743Google Scholar
  12. Schmidt RF (ed) (1981) Fundamentals of sensory physiology, 2nd edn. Springer, Berlin Heidelberg New York pp 1–286Google Scholar
  13. Schmidt RF, Thews G (eds) (1983) Human physiology. Springer, Berlin Heidelberg New York, pp 1–725Google Scholar
  14. Schmitt FO, Worden G (eds) (1979) The neurosciences, Fourth Study Program, MIT, Cambridge Massachusetts London, pp 1–1185Google Scholar
  15. Sherrington CS (1961) The integrative action of the nervous system. Yale University Press, New Haven (1st edn 1906) pp 1–413Google Scholar
  16. Worden FG, Swazey JP, Adelman G (eds) (1975) The neurosciences: Paths of discovery. MIT, Cambridge, Mass., pp 1–622Google Scholar

Chapter 1

  1. Bradbury MW (1979) The concept of a blood-brain barrier. Wiley, Chichester, pp 1–465Google Scholar
  2. Davson H (1976) The blood-brain barrier. J Physiol (Lond) 255: 1–28Google Scholar
  3. Fawcett DW (1966) An atlas of fine structure: the cell, its organelles and inclusions. WB Saunders, Philadelphia LondonGoogle Scholar
  4. Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60: 1167–1283PubMedGoogle Scholar
  5. Handbook of Physiology (1977) Section 1: The nervous system, vol I: Cellular biology of neurons. William & Wilkins, Baltimore, pp 1–1238 (in two books)Google Scholar
  6. Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc 168: 1CrossRefGoogle Scholar
  7. Maran TH (1980) The cerebrospinal fluid. In: Mountcastle V (ed) Medical physiology, vol II. 14th ed. Mosby, St. Louis, p 1218Google Scholar
  8. Peters A, Palay SL, Webster H def (1976) The fine structure of the nervous system. WB Saunders, Philadelphia London TorontoGoogle Scholar
  9. Scharper E (1944) The blood vessels of the nervous tissue. Q Rev Biol 19: 308CrossRefGoogle Scholar
  10. Watson WE (1974) Physiology of neuroglia. Physiol Rev 54: 245PubMedGoogle Scholar
  11. Waxman SG (ed) (1978) Physiology and pathobiology of axons. Raven, New YorkGoogle Scholar

Chapter 2

  1. Armstrong CM (1981) Sodium channels and gating currents. Physiol Rev 61: 644PubMedGoogle Scholar
  2. Hodgkin AL, Huxley AF (1952) Quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500Google Scholar
  3. Hoppe W, Lohmann W, Markl H, Ziegler H (1983) Biophysics. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  4. Katz B (1966) Nerve, muscle and synapse. McGraw Hill, New YorkGoogle Scholar
  5. Noble D (1966) Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev 46: 1PubMedGoogle Scholar
  6. Ruch TG, Patton HD (1974) Physiology and biophysics. Saunders, PhiladelphiaGoogle Scholar
  7. Schmidt RF, Thews G (eds) (1983) Human physiology. Springer, Berlin Heidelberg New York, pp 1–725Google Scholar
  8. Ulbricht W (1977) Ionic channels and gating currents in excitable membranes. Ann Rev Biophys Bioeng 6:7CrossRefGoogle Scholar

Chapter 3

  1. Burgen A, Kosterlitz HW, Iversen LL (eds) (1980) Neuroactive peptides. The Royal Society, London, pp 1–195Google Scholar
  2. Ceccarelli B, Hurlbut WP (1980) Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev 60: 396–441PubMedGoogle Scholar
  3. Cooper JR, Bloom, FE, Roth RH (1978) The biochemical basis of neuropharmacology, 3rd edn. Oxford University Press, New York, pp 1–327Google Scholar
  4. Cottrell GA, Usherwood PNR (eds) (1977) Synapses. Blackie, Glasgow, pp 1–384Google Scholar
  5. DeFeudis FV, Mandel P (eds) (1981) Amino acid neurotransmitter. Raven, New York, pp 1–572Google Scholar
  6. Eccles JC (1964) The physiology of synapses. Springer, Berlin Göttingen Heidelberg New YorkCrossRefGoogle Scholar
  7. Eccles JC (1982) The synapse: from electrical to chemical transmission. Ann Rev. Neurosci 5:325–339PubMedCrossRefGoogle Scholar
  8. Katz B (1966) Nerve, muscle and synapse. McGraw-Hill, New YorkGoogle Scholar
  9. Kravitz EA, Treherne JE (eds) (1980) Neurotransmission, neurotransmitters, and neuromodulators. J Exp Biol 89: 1–286Google Scholar
  10. Loewenstein WR (1981) Junctional intercellular communication: The cell-to-cell membrane channel. Physiol Rev 61: 829–913PubMedGoogle Scholar
  11. Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol Biol Chem Exp Pharmacol 63: 20–101Google Scholar
  12. Stjärne L, Hedqvist P, Lagercrantz H, Wennmalm Å (eds) (1981) Chemical neurotransmission. Academic Press, New York, pp 1–562Google Scholar
  13. Taxi J (ed) Ontogenesis and functional mechanisms of peripheral synapses. Elsevier, Amsterdam, pp 1–196Google Scholar
  14. The Synapse (1976) Cold Spring Harbor Symp. Quant Biol 40Google Scholar
  15. Tsukahara N (1981) Synaptic plasticity in the mammalian central nervous system. Ann Rev Neurosci 4:351–379PubMedCrossRefGoogle Scholar
  16. Vincent A (1980) Immunology of acetylcholine receptors in relation to myasthenia gravis. Physiol Rev 60: 756–824PubMedGoogle Scholar
  17. Zaimis E (ed) (1976) Neuromuscular junction. Springer, Berlin Heidelberg New York, pp 1–746Google Scholar

Chapter 4

  1. Eccles JC (1969) The inhibitory pathways of the central nervous system. The Sherrington Lectures IX. Thomas, Springfield/Ill., pp 1–135.Google Scholar
  2. Fearing F (1930) Reflex action. A study in the history of physiological psychology. Williams & Wilkins, BaltimoreGoogle Scholar
  3. Feinstein B, Lindegaard B, Nyman, E, Wohlfahrt G (1955) Morphologic studies of motor units in normal human muscles. Acta Anat (Basel) 23: 127CrossRefGoogle Scholar
  4. Fulton JF (1943) Physiology of the nervous system. Oxford University Press, London New York TorontoGoogle Scholar
  5. Handbook of Physiology (1981) Section 1: The nervous system, vol II: Motor control,Google Scholar
  6. Sherrington CS (1961) The integrative action of nervous system. Yale University Press, New Haven (1st edn 1906), pp 1–413Google Scholar
  7. Schmitt FO, Worden FG (eds) (1979) The neurosciences. Fourth Study Program. MIT, Cambridge, Mass., pp 1–1185Google Scholar
  8. Taylor A, Prochazka A (eds) (1981) Muscle receptors and movement. Macmillan, London, pp 1–446Google Scholar

Chapter 5

  1. Bourne GH (ed) (1972) The structure and function of muscle, 2nd edn, vol I–III. Academic Press, London New YorkGoogle Scholar
  2. Carlson FD, Wilkie DR (1974) Muscle physiology. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  3. Hoppe W, Lohmann W, Markl H, Ziegler H (1983) Biophysics. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  4. Huxley AF (1974) Muscular contraction. J Physiol 243: 1PubMedGoogle Scholar
  5. Schmidt RF, Thews G (eds) (1983) Human physiology. Springer, Berlin Heidelberg New York, pp 1–725Google Scholar

Chapter 6

  1. Boyd JA, Davey MR (1968) Composition of peripheral nerves. Livingstone, Edinburgh LondonGoogle Scholar
  2. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York London Toronto, pp 1–1053Google Scholar
  3. Creutzfeldt O, Schmidt RF, Willis WD (eds) (1984) Sensory-motor integration in the nervous system. Exp Brain Res Suppl 9, Springer, BerlinGoogle Scholar
  4. Desmedt JE (ed) (1983) Motor control mechanisms in health and disease. Raven Press, New YorkGoogle Scholar
  5. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Granit R (1970) The basis of motor control. Academic Press, London New YorkGoogle Scholar
  7. Handbook of Physiology (1981) Section 1: The nervous system, vol II: Motor control, Part 1, pp 1–733, Part 2: pp 735–1480. American Physiological Society, Bethesda (Part 1, pp 1–733; part 2, pp 735–1480)Google Scholar
  8. Ito M (1984) The cerebellum and neural control. Raven Press, New YorkGoogle Scholar
  9. Kemp JM, Powell TPS (1971) The connexions of the striatum and globus pallidus: synthesis and speculation, Phil Trans 262: 441CrossRefGoogle Scholar
  10. Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. University of Minnesota Press, MinneapolisGoogle Scholar
  11. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, LondonGoogle Scholar
  12. Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New YorkGoogle Scholar
  13. Schmidt RF (1973) Control of the access of afferent activity to somatosensory pathways. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol II, p 151)Google Scholar
  14. Schmidt RF, Thews G (eds) (1983) Human physiology. Springer, Berlin Heidelberg New York, pp 1–725Google Scholar
  15. Taylor A, Prochazka A (eds) (1981) Muscle receptors and movement. Macmillan, London, pp 1–446Google Scholar

Chapter 7

  1. Granit R (1970) The basis of motor control. Academic Press, London New YorkGoogle Scholar
  2. Handbook of Physiology (1981) Section 1: The nervous system, vol II: Motor control, Part 1, pp 1–733, Part 2: pp 735–1480. American Physiological Society, Bethesda (Part 1, pp 1–733; part 2, pp 735–1480)Google Scholar
  3. Ito M (1984) The cerebellum and neural control. Raven Press, New YorkGoogle Scholar
  4. Kemp JM, Powell TPS (1971) The connexions of the striatum and globus pallidus: synthesis and speculation, Phil Trans 262: 441CrossRefGoogle Scholar
  5. Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. University of Minnesota Press, MinneapolisGoogle Scholar
  6. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, LondonGoogle Scholar
  7. Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New YorkGoogle Scholar
  8. Schmidt RF (1973) Control of the access of afferent activity to somatosensory pathways. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol II, p 151)Google Scholar
  9. Schmidt RF, Thews G (eds) (1983) Human physiology. Springer, Berlin Heidelberg New York, pp 1–725Google Scholar
  10. Taylor A, Prochazka A (eds) (1981) Muscle receptors and movement. Macmillan, London, pp 1–446Google Scholar
  11. Granit R (1970) The basis of motor control. Academic Press, London New YorkGoogle Scholar
  12. Grodins FS (1963) Control theory and biological systems. Columbia University Press, New YorkGoogle Scholar
  13. Homma S (1976) Understanding the stretch reflex. Progr Brain Res 44Google Scholar
  14. Houk J (1980) Principles of system theory as applied to physiology. In: Mountcastle VB (ed) Medical physiology, vol 1. 14th Ed. Mosby, St. Louis, pp 225Google Scholar
  15. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, LondonGoogle Scholar
  16. Smith JM (1968) Mathematical ideas in biology. Cambridge University Press, Cambridge New YorkCrossRefGoogle Scholar
  17. Wiener N (1948) Cybernetics. Freymann, Paris New YorkGoogle Scholar

Chapter 8

  1. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York London TorontoGoogle Scholar
  2. Cannon WB (1929) Bodily changes in pain, hunger, fear and rage, 2nd edn. Appleton & Co., New YorkGoogle Scholar
  3. Cannon WB (1939) The wisdom of the body, 2nd edn. Norton, New YorkGoogle Scholar
  4. Davson H, Segal MB: Introduction to physiology vol 2: Basic mechanisms (Part 2) (1975), vol 3 (1976), vol 5: Control of reproduction (1980) Academic Press, London Toronto Sydney; Grune & Stratton, New York San FranciscoGoogle Scholar
  5. Folkow B, Neil E (1971) Circulation. Oxford University Press, New York London TorontoGoogle Scholar
  6. Gabella G (1976) Structure of the autonomic nervous system. Chapman & Hall, LondonCrossRefGoogle Scholar
  7. Johnson RH, Spalding JMK (1974) Disorders of the autonomic nervous system. Blackwell, Oxford London Edinburgh MelbourneGoogle Scholar
  8. Masters WH, Johnson VE (1966) Human sexual response. Little, Brown & Co., BostonGoogle Scholar
  9. Monnier M (1968) Functions of the nervous system. General physiology: autonomic functions (neurohumoral regulations) Vol. I. Elsevier, AmsterdamGoogle Scholar

Chapter 9

  1. Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Appleton-Century-Crofts, New York, pp 1–235Google Scholar
  2. Bindman L, Lippold O (1981) The neurophysiology of the cerebral cortex. Arnold, London, pp 1–495Google Scholar
  3. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York London Toronto, pp 1–1053Google Scholar
  4. Damasio AR, Geschwind N (1984) The neural basis of language. Ann Rev Neurosci 7:127–147PubMedCrossRefGoogle Scholar
  5. Eccles JC (ed) (1966) Brain and conscious experience. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Eccles JC (1979) The human mystery. Springer, Berlin Heidelberg New York, pp 1–255Google Scholar
  7. Eccles JC (1980) The human psyche. Springer, Berlin Heidelberg New York, pp 1–279Google Scholar
  8. Gazzaniga MS (ed) (1979) Neuropsychology. Handbook of behavioral neurobiology, vol 2. Plenum, New York, pp 1–566Google Scholar
  9. Gazzaniga MS, LeDoux JE (1978) The integrated mind. Plenum, New York, pp 1–168Google Scholar
  10. Jovanović UJ (1971) Normal sleep in man. Hippokrates, StuttgartGoogle Scholar
  11. McGeer PL, Eccles JC, McGeer EG (1978) Molecular neurobiology of the mammalian brain. Plenum, New York London, pp 1–644Google Scholar
  12. Mills JN (1966) Human circadian rhythms. Physiol Rev 46: 128–159PubMedGoogle Scholar
  13. Milner B (1970) Memory and the medial temporal regions of the brain. In: Pribram KH, Broadbent DE (eds) Biology of memory. Academic Press, New York London, p 29Google Scholar
  14. Moruzzi G (1972) The sleep-waking cycle (Neurophysiology and neurochemistry of sleep and wakefulness). Ergeb Physiol Biol Chem Exp Pharmakol 64: 1–165Google Scholar
  15. Penfield W, Roberts L (1959) Speech and brain mechanisms. Princeton University Press, Prince ton/N.J.Google Scholar
  16. Rose SPR (1981) What should a biochemistry of learning and memory be about? Neuroscience 6: 811–821PubMedCrossRefGoogle Scholar
  17. Schmitt FO, Wordan FG, Adelman A, Dennis SG (eds) (1981) The organization of the cerebral cortex. MIT, Cambridge, Mass, pp 1–592Google Scholar
  18. Sperry RW (1969) A modified concept of consciousness. Psychol Rev 76: 532–536PubMedCrossRefGoogle Scholar
  19. Thompson RF, Berger TW, Madden IV J (1983) Cellular processes of learning and memory in the mammalian CNS. Ann Rev Neurosci 6:447–491PubMedCrossRefGoogle Scholar
  20. Squire LR (1982) The neuropsychology of human memory. Ann Rev Neurosci 5:241–273PubMedCrossRefGoogle Scholar
  21. Weitzman ED (1981) Sleep and its disorders. Ann Rev Neurosc 4: 381–417CrossRefGoogle Scholar
  22. Wever RA (1979) The circadian system of man: Results of experiments under temporal isolation. Springer, New York Berlin Heidelberg, pp 1–276Google Scholar
  23. Wolman BB (ed) (1979) Handbook of dreams. Research, theories and applications. Van Nostrand Reinhold, New York, pp 1–447Google Scholar
  24. Zippel HP (ed) (1973) Memory and transfer of information. Plenum, New York London, pp 1–582Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1985

Authors and Affiliations

  • Robert F. Schmidt
    • 1
  1. 1.Physiologisches Institut der Universität KielKielFederal Republik of Germany

Personalised recommendations