Biochemical Targets for Antifungal Azole Derivatives: Hypothesis on the Mode of Action

  • Hugo Vanden Bossche
Part of the Current Topics in Medical Mycology book series (CT MYCOLOGY, volume 1)

Abstract

An amazing number of antifungal agents are found within the group of azole-containing compounds. A great number are breakthroughs in anti-fungal therapy in both human and veterinary medicine, and they show excellent activity against phytopathogenic fungi. Structural formulae of some imidazole and triazole derivatives are shown in Figures 12-1 and 12-2.

Keywords

Cholesterol Candida Phosphatidylcholine Piperazine Diglyceride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerts F, De Brabander M, Vanden Bossche H, Van Cutsem J, Borgers M: The activity of ketoconazole in mixed cultures of fungi and human fibroblasts. Mykosen 24: 53–67, 1980.Google Scholar
  2. 2.
    Alexander K, Akhtar M, Boar RB, McGhie JF, Barton DHR: The removal of the 32-carbon atom as formic acid in cholesterol biosynthesis. J Chem Soc Chem Commun 1972, pp 383–385.Google Scholar
  3. 3.
    Alexander KTW, Mitropoulos KA, Gibbons GF: A possible role for cytochrome P-450 during the biosynthesis of zymosterol from lanosterol by Saccharomyces cerevisiae. Biochem Biophys Res Commun 60: 460–467, 1974.PubMedGoogle Scholar
  4. 4.
    Alford RH, Cartwright BB: Comparison of ketoconazole and amphotericin B in interference with thymidine uptake by blastogenesis of lymphocytes stimulated with Histoplasma capsulatum antigens. Antimicrob Agents Chemother 24: 575–578, 1983.PubMedGoogle Scholar
  5. 5.
    Aoyama Y, Yoshida Y: Interaction of lanosterol to cytochrome P-450 purified from yeast microsomes: Evidence for contribution of cytochrome P-450 to lanosterol metabolism. Biochem Biophys Res Commun 82: 33–38, 1978.PubMedGoogle Scholar
  6. 6.
    Aoyama Y, Yoshida Y: The 14a-demethylation of lanosterol by a reconstituted cytochrome P-450 system from yeast microsomes. Biochem Biophys Res Commun 83: 28–34, 1978.Google Scholar
  7. 7.
    Aoyama Y, Okikawa T, Yoshida Y: Evidence for the presence of cytochrome P-450 functional in lanosterol 14a-demethylation in microsomes of aerobically grown respiring yeast. Biochem Biophys Acta 665: 596–601, 1981.PubMedGoogle Scholar
  8. 8.
    Aoyama Y, Yoshida Y, Hata S, Nishino T, Katsuki H: Buthiobate: A potent inhibitor for yeast cytochrome P-450 catalyzing 14a-demethylation of lanosterol. Biochem Biophys Res Commun 115: 642–647, 1983.PubMedGoogle Scholar
  9. 9.
    Aoyama Y, Yoshida Y, Hata S, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB: Altered cytochrome P-450 in a yeast mutant blocked in demethylating C-32 of lanosterol. J Biol Chem 258: 9040–9042, 1983.PubMedGoogle Scholar
  10. 10.
    Astin AM, Haslam JM: The effects of altered membrane sterol composition on oxidative phosphorylation in a haem mutant of Saccharomyces cerevisiae. Biochem J 166: 287–298, 1977.Google Scholar
  11. 11.
    Atkins SD, Morgan B, Baggaley KH, Green J: Isolation of 2,3-oxidosqualene from the liver of rats treated with 1-dodecylimidazole, a novel hypocholesteremic agent. Biochem J 130: 153–157, 1972.Google Scholar
  12. 12.
    Baldassare JJ, Silbert DF: Membrane phospholipid metabolism in response to sterol depletion. Compensatory compositional changes which maintain 3-O-methylglucose transport. J Biol Chem 254: 10078–10083, 1979.PubMedGoogle Scholar
  13. 13.
    Baldassare JJ, Saito Y, Silbert DF: Effect of sterol depletion on LM cell sterol mutants. Changes in the lipid composition of the plasma membrane and their effects on 3-O-methylglucose transport. J Biol Chem 254: 1108–1113, 1979.PubMedGoogle Scholar
  14. 14.
    Bard M, Lees ND, Burrows LS, Kleinhans FW: Differences in crystal violet uptake and cation-induced death among yeast sterol mutants. J Bacteriol 135: 1146–1148, 1978.PubMedGoogle Scholar
  15. 15.
    Barug D, Samson RA, Kerkenaar A: Microscopic studies of Candida albi-cans and Torulopsis glabrata after in vitro treatment with bifonazole. Light and scanning electron microscopy. Arzneim Forsch 33: 528–537, 1983.Google Scholar
  16. 16.
    Beggs WH: Comparison of miconazole and ketoconazole-induced release of K+ from Candida species. J Antimicrob Chemother 11: 381–383, 1983.PubMedGoogle Scholar
  17. 17.
    Blanquet PR: Regulation of surface-membrane enzymes by lipid ordering. A model based on allosteric transition theory. Biochem J 213: 479–484, 1983.PubMedGoogle Scholar
  18. 18.
    Bloch KE: Sterol structure and membrane function. Grit Rev Biochem 14: 47–92, 1983.Google Scholar
  19. 19.
    Borgers M: Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev Infect Dis 2: 520–534, 1980.PubMedGoogle Scholar
  20. 20.
    Borgers M: Mechanism of action of the antimycotics with special reference to the imidazole derivatives. Boerhave Committee for Postgraduate Medical Education, Diagnosis and Therapy of Systemic Mycoses. Faculty of Medicine, University of Leiden, The Netherlands, June 11–12, 1981.Google Scholar
  21. 21.
    Borgers M, Vanden Bossche H: The mode of action of antifungal drugs, in Levine HB (ed): Ketoconazole in the Management of Fungal Disease. New York, Adis Press, 1982, pp 25–47.Google Scholar
  22. 22.
    Borgers M, De Nollin S, Thoné F, Van Belle H: Cytochemical localization of NADH oxidase in Candida albicans. J Histochem Cytochem 25: 193–199, 1977.Google Scholar
  23. 23.
    Borgers M, De Brabander M, Vanden Bossche H, Van Cutsem J: Promotion of pseudomycelium formation of Candida albicans in culture: A morphologic study of the effects of miconazole and ketoconazole. Postgrad Med J 55: 687–691, 1979.PubMedGoogle Scholar
  24. 24.
    Bowen WD: Study of an isosafrole-induced cytochrome P-450 in the microsomal oxidase attack of lanosterol. Fed Proc 39: 1723, 1980.Google Scholar
  25. 25.
    Brasseur R, Vandenbosch C, Vanden Bossche H, Ruysschaert JM: Mode of insertion of miconazole, ketoconazole and deacylated ketoconazole in lipid layers. A conformational analysis. Biochem Pharmacol 32: 2175–2180, 1983.PubMedGoogle Scholar
  26. 26.
    Braun PC, Calderon RA: Chitin synthesis in Candida albicans: Comparison of yeast and hyphal forms. J Bacteriol 135: 1472–1477, 1978.Google Scholar
  27. 27.
    Buchenauer H: Hemmung der Ergosterinbiosynthese in Ustilago avenae durch Triadimefon und Fluotrimazol. Z Pflanzenkr Pflanzenschutz 83: 363–367, 1976.Google Scholar
  28. 28.
    Buchenauer H: Wirkungsmechanismus von ®Bayleton (Triadimefon) in Ustilago avenae. Pflanzenschutz Nachr Bayer 29: 281–302, 1976.Google Scholar
  29. 29.
    Buchenauer H: Mechanism of action of the fungicide imazalil in Ustilago avenae. Z Pflanzenkr Pflanzenschutz 84: 440–450, 1977.Google Scholar
  30. 30.
    Buchenauer H: Mode of action and selectivity of fungicides which interfere with ergosterol biosynthesis. Proceedings 1977, British Crop Protection Conference—Pests and Diseases, 1977.Google Scholar
  31. 31.
    Buchenauer H: Analogy in the mode of action of fluotrimazole and clotrimazole in Ustilago avenae. Pestic Biochem Physiol 8: 15–25, 1978.Google Scholar
  32. 32.
    Buchenauer H: Inhibition of ergosterol biosynthesis by triadimenol in Ustilago avenae. Pestic Sci 9: 507–512, 1978.Google Scholar
  33. 33.
    Buchenauer H, Grossmann F: Triadimefon: Mode of action in plants and fungi. Neth J Plant Pathol 83 (Suppl 1): 93–103, 1977.Google Scholar
  34. 34.
    Buchenauer H, Kemper K: Wirkungsweise von Propiconazole (Desmel®) in verschiedenen Pilzen. Med Fac Landbouw Rijksuniv Gent 46: 909–921, 1981.Google Scholar
  35. 35.
    Buttke TM, Chapman SW: Inhibition by ketoconazole of nitrogen-induced DNA synthesis and cholesterol biosynthesis in lymphocytes. Antimicrob Agents Chemother 24: 478–485, 1983.PubMedGoogle Scholar
  36. 36.
    Buttke TM, Jones SD, Bloch K: Effect of sterol side chains on growth and membrane fatty acid composition of Saccharomyces cerevisiae. J Bacteriol 144: 124–130, 1980.Google Scholar
  37. 37.
    Cabib E, Blowers B, Roberts RL: Vectorial synthesis of a polysaccharide by isolated plasma membranes. Proc Natl Acad Sci USA 80: 3318–3321, 1983.PubMedGoogle Scholar
  38. 38.
    Chattaway FW, Holmes MR, Barlow A-JE: Cell wall composition of the mycelial and blastospore forms of Candida albicans. J Gen Microbiol 51: 367–376, 1968.Google Scholar
  39. 39.
    Cheah KS, Cheah AM: Effect of ketoconazole and miconazole on skeletal muscle mitochondrial calcium transport system. Experientia 39: 290–293, 1983.PubMedGoogle Scholar
  40. 40.
    Chiew YY, Sullivan PA, Shepherd MG: The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can J Biochem 60: 15–20, 1982.Google Scholar
  41. 41.
    Cope JE: Mode of action of miconazole on Candida albicans: Effect on growth, viability and K+ release. J Gen Microbiol 119: 245–251, 1980.PubMedGoogle Scholar
  42. 42.
    Dahl JS, Dahl CE, Bloch K: Sterol in membranes: Growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry 18: 1467–1472, 1980.Google Scholar
  43. 43.
    Dawson JH, Anderson LA, Sono M: The sixth ligand of ferric cytochrome P-450, in Hietanen E, Laitinen M, Hänninen O (eds): Cytochrome P-450, Biochemistry, Biophysics and Environmental Implications. Amsterdam, Elsevier Biomedical Press, 1982, pp 523–529.Google Scholar
  44. 44.
    De Nollin S, Borgers M: Scanning electron microscopy of Candida albi-cans after in vitro treatment with miconazole. Antimicrob Agents Che-mother 7: 704–711, 1975.Google Scholar
  45. 45.
    De Nollin S, Van Belle H, Goossens F, Thoné F, Borgers M: Cytochemical and biochemical studies of yeasts after in vitro exposure to miconazole. Antimicrob Agents Chemother 11: 500–513, 1977.PubMedGoogle Scholar
  46. 46.
    De Waard MA, Groeneweg H, Nistelrooy JGM: Laboratory resistance to fungicides which inhibit ergosterol biosynthesis in Penicillium italicum. Neth J Plant Pathol 88: 99–112, 1982.Google Scholar
  47. 47.
    Dickinson DP: The effects of miconazole on rat liver mitochondria. Biochem Pharmacol 26: 541–542, 1977.PubMedGoogle Scholar
  48. 48.
    Dufour J-P, Bontry M, Goffeau A: Plasma membrane ATPase of yeast. J Biol Chem 255: 5735–5741, 1980.PubMedGoogle Scholar
  49. 49.
    Duran A, Cabib E, Bowers B: Chitin synthetase distribution on the yeast plasma membrane. Science 203: 363–365, 1979.PubMedGoogle Scholar
  50. 50.
    Ebert E, Gaudin J, Muecke W, Ramsteiner K, Vogel C, Fuhrer H: Inhibition of ergosterol biosynthesis by etaconazole in Ustilago maydis. Z Naturforsch 38c: 28–34, 1983.Google Scholar
  51. 51.
    Enoch HG, Catalâ A, Strittmatter P: Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem 251: 5095–5103, 1976.PubMedGoogle Scholar
  52. 52.
    Fisher GJ, Fukushima H, Gaylor JL: Isolation, purification, and properties of a unique form of cytochrome P-450 in microsomes of isosafrole-treated rats. J Biol Chem 256: 4388–4394, 1981.PubMedGoogle Scholar
  53. 53.
    Freedman RB: Membrane-bound enzymes, in Finean JB, Michell RH (eds): Membrane Structure. Amsterdam, Elsevier/North-Holland Biomedical Press, 1981, pp 161–214.Google Scholar
  54. 54.
    Freter CE, Ladenson RC, Silbert DF: Membrane phospholipid alterations in response to sterol depletion of LM-cells. J Biol Chem 254: 6909–6916, 1979.PubMedGoogle Scholar
  55. 55.
    Gadher P, Mercer EI, Baldwin BC, Wiggins TE: A comparison of the potency of some fungicides as inhibitors of sterol 14-demethylation. Pestic Biochem Physiol 19: 1–10, 1983.Google Scholar
  56. 56.
    Gale FF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ: The Molecular Basis of Antibiotic Action, ed 2. London, John Wiley & Sons, 1981, pp 201–219.Google Scholar
  57. 57.
    Gaylor JL: Formation of sterols in animals, in Potter JW, Spurgeon SL (eds): Biosynthesis of Isoprenoid Compounds. New York, John Wiley & Sons, 1981, vol 1, pp 497–519.Google Scholar
  58. 58.
    Gibbons GF, Mitropoulos KA: The role of cytochrome P-450 in cholesterol biosynthesis. Eur J Biochem 40: 267–273, 1973.PubMedGoogle Scholar
  59. 59.
    Gibbons GF, Mitropoulos KA: The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during its biosynthesis from [2–14C] mevalonic acid in vitro. Biochem J 132: 439–448, 1973.PubMedGoogle Scholar
  60. 60.
    Gibbons GF, Mitropoulos KA, Myant NB: Biochemistry of Cholesterol. Amsterdam, Elsevier/North-Holland Biomedical Press, 1982.Google Scholar
  61. 61.
    Gilpatrick JD: Resistance to ergosterol biosynthesis-inhibiting fungicides in laboratory strains of Monilinia fructicola (abstract). Neth J Plant Pathol 87: 240, 1981.Google Scholar
  62. 62.
    Gooday GW: The enzymology of hyphal growth, in Smith JE, Berry DR (eds): The Filamentous Fungi: Developmental Biology. London, Edward Arnold, 1978, vol 3, pp 51–77.Google Scholar
  63. 63.
    Hashimoto C, Imai Y: Purification of a substrate complex of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-treated rabbits. Biochem Biophys Res Commun 68: 821–827, 1976.PubMedGoogle Scholar
  64. 64.
    Haslam JM, Astin AM, Nichols WW: The effects of altered sterol composition on the mitochondrial adenine nucleotide transporter of Saccharomyces cerevisiae. Biochem J 166: 559–563, 1977.Google Scholar
  65. 65.
    Hata S, Nishino T, Komori M, Katsuki H: Involvement of cytochrome P-450 in O22-desaturation in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun 103: 272–277, 1981.PubMedGoogle Scholar
  66. 66.
    Hata S, Nishino T, Katsuki H, Aoyama Y, Yoshida Y: Two species of cytochrome P-450 involved in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun 116: 162–166, 1983.PubMedGoogle Scholar
  67. 67.
    Heeres J, De Brabander M, Vanden Bossche H: Ketoconazole: Chemistry and basis for selectivity. Current chemotherapy and immunotherapy. Proceedings of the 12th International Congress of Chemotherapy. Florence, Italy, 1981, pp 1007–1009.Google Scholar
  68. 68.
    Henry MJ: Effects of sterol biosynthesis inhibiting fungicides on cytochrome P-450 oxygenations in fungi. Thesis. University of Maryland, College Park, 1983.Google Scholar
  69. 69.
    Henry MJ, Sisler HD: Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Antimicrob Agents Chemother 15: 603–607, 1979.Google Scholar
  70. 70.
    Henry MJ, Sisler HD: Inhibition of ergosterol biosynthesis in Ustilago maydis by the fungicide 1-[2-(2,4-dichlorophenyl)-4-ethyl-1,3-dioxolan2 ylmethyl]-1H-1,2,4-triazole. Pestic Sci 12: 98–102, 1981.Google Scholar
  71. 71.
    Henry MJ, Sisler HD: Subcellular mechanism of action of sterol biosynthesis inhibiting fungicides (abstract). Phytopathology 72: 707, 1982.Google Scholar
  72. 72.
    Holland HL: Methyl group removal in steroid biosynthesis. Chem Soc Rev 10: 435–453, 1981.Google Scholar
  73. 73.
    Iwata K, Yamaguchi H, Hirantani T: Mode of action of clotrimazole. Sabouraudia 11: 158–166, 1973.PubMedGoogle Scholar
  74. 74.
    Kato T: Mechanism of action of Denmert®, an inhibitor of sterol biosynthesis. Neth J Plant Pathol 83 (Suppl 1): 113–120, 1977.Google Scholar
  75. 75.
    Kato T: Biosynthetic processes of ergosterol as the target of fungicides, in Matsunaka S, Hutson DH, Murphy SD (eds): Pesticide Chemistry: Human Welfare and the Environment: Mode of Action, Metabolism and Toxicology. Proceedings of the 5th International Congress of Pesticide Chemistry, Kyoto, Japan, August 29–September 4, 1982. Oxford, Pergamon Press, 1982, vol 3, pp 33–41.Google Scholar
  76. 76.
    Kato T, Kawase Y: Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide, Denmert® (S-1358). Agr Biol Chem 40 (Suppl 12): 2379–2388, 1976.Google Scholar
  77. 77.
    Kato T, Shoami M, Kawase Y: Comparison of tridemorph with buthiobate in antifungal mode of action. J Pestic Sci 5: 68–79, 1980.Google Scholar
  78. 78.
    Kerkenaar A: Mode of action of tridemorph and related compounds, in Matsunaka S, Hutson DH, Murphy SD (eds): Pesticide Chemistry: Human Welfare and the Environment: Mode of Action, Metabolism and Toxicology. Proceedings of the 5th International Congress of Pesticide Chemistry, Kyoto, Japan, August 29–September 4, 1982. Oxford, Pergamon Press, 1982, vol 3, pp 123–127.Google Scholar
  79. 79.
    Kovâc L, Ubík J, Russ G, Kollar K: On the relationship between respiratory activity and lipid composition of the yeast cell. Biochim Biophys Acta 144: 94–101, 1967.PubMedGoogle Scholar
  80. 80.
    Kuroda S, Uno J, Arai T: Target substances of some antifungal agents in the cell membrane. Antimicrob Agents Chemother 13: 454–459, 1978.PubMedGoogle Scholar
  81. 81.
    Leroux P, Gredt M: Effet de l’imazalil [1-(2-(2,4-dichlorophényl)-2-(2-propényloxy)éthyl)-1H-imidazole] sur la biosynthèse de l’ergostérol chez Penicillium expansum Link. Note. C R Acad Sci Paris 286: 427–429, 1978.Google Scholar
  82. 82.
    Leroux P, Gredt M: Effets de quelques fongicides sur la biosynthèse de l’ergostérol chez Botrytis cinerea Pers, Penicillium expansum Link, et Ustilago maydis (DC) Cda. Ann Phytopathol 10: 45–60, 1978.Google Scholar
  83. 83.
    Leroux P, Gredt M: Cross resistance between ergosterol biosynthesis-inhibiting fungicides in Aspergillus nidulans, Botrytis cinerea, Penicillium expansum and Ustilago maydis. Neth J Plant Pathol 87: 240–241, 1981.Google Scholar
  84. 84.
    Leroux P, Gredt M, Fritz R: Similitudes et différences entre les modes d’action de l’imazalil, du triadimefon, du triarimol et de la triforine. Phytiatr Phytopharm 25: 317–334, 1976.Google Scholar
  85. 85.
    Linnane AW, Haslam JM, Forrester IT: The influence of altered membrane lipid composition on mitochondrial nucleic acid synthesis and oxidative phosphorylation in Saccharomyces cerevisiae, in Azzone GF, Carafoli E, Lehninger AL, Quagliariello E, Siliprandi N (eds): Biochemistry and Biophysics of Mitochondrial Membranes. New York, Academic Press, 1972, pp 523–539.Google Scholar
  86. 86.
    Lloyd D: The Mitochondria of Microorganisms. London, Academic Press, 1974, pp 181–186.Google Scholar
  87. 87.
    Marriott MS: Inhibition of sterol biosynthesis in Candida albicans by imidazole-containing antifungals. J Gen Microbiol 117: 253–255, 1980.PubMedGoogle Scholar
  88. 88.
    Matolcsy G, Kovacs M, Tüske M, Tóth B: Studies on the antifungal action of potential steroid inhibitors. Neth J Plant Pathol 83 (Suppl 1): 39–47, 1977.Google Scholar
  89. 89.
    Mitropoulos KA, Gibbons GF, Reeves BEA: Lanosterol 14a-demethylase. Similarity of the enzyme system from yeast and rat liver. Steroids 27: 821–829, 1976.PubMedGoogle Scholar
  90. 90.
    Mitropoulos KA, Gibbons GF, Connell CM, Woods RA: Effect of triarimol on cholesterol biosynthesis in rat-liver subcellular fractions. Biochem Biophys Res Commun 71: 892–900, 1976.PubMedGoogle Scholar
  91. 91.
    Molano J, Bowers B, Cabib E: Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J Cell Biol 85: 199–212, 1980.PubMedGoogle Scholar
  92. 92.
    Nes WR: Role of sterols in membranes. Lipids 9: 596–612, 1974.PubMedGoogle Scholar
  93. 93.
    Nes WR, Sekula BC, Ness WD, Adler JH: The functional importance of structural features of ergosterol in yeast. J Biol Chem 253: 6218–6225 1978.PubMedGoogle Scholar
  94. 94.
    Ohba M, Sato R, Yoshida Y, Nishino T, Katsuki H: Involvement of cytochrome P-450 and a cyanide-sensitive enzyme in different steps of lanosterol demethylation by yeast microsomes. Biochem Biophys Res Commun 85: 21–27, 1978.PubMedGoogle Scholar
  95. 95.
    Omura T, Sato R: The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemaprotein nature. J Biol Chem 239: 2370–2378, 1964.PubMedGoogle Scholar
  96. 96.
    Pappas AC, Fisher DJ: A comparison of the mechanisms of action of vinclozolin, procymidone, iprodione and prochloraz against Botrytis cinerea. Pestic Sci 10: 239–246, 1979.Google Scholar
  97. 97.
    Parks LW, Starr PR: A relationship between ergosterol and respiratory competency in yeast. J Cell Comp Physiol 61: 61–65, 1963.PubMedGoogle Scholar
  98. 98.
    Pye GW, Marriott MS: Inhibition of sterol C14-demethylation by imidazole containing antifungals. Sabouraudia 20: 325–329, 1982.PubMedGoogle Scholar
  99. 99.
    Raab W, Högl F: Die Wirkung von Antimyzetisch aktiven Imidazolderivativen auf Mitochondrien der Rattenleber. Mykosen 25: 431–438, 1981.Google Scholar
  100. 100.
    Ragsdale NN: Specific effects of triarimol on sterol biosynthesis in Ustilago maydis. Biochem Biophys Acta 380: 81–96, 1975.Google Scholar
  101. 101.
    Ragsdale NN, Sisler HD: Inhibition of ergosterol synthesis in Ustilago maydis by the fungicide triarimol. Biochem Biophys Res Commun 46: 2048–2053, 1972.PubMedGoogle Scholar
  102. 102.
    Ragsdale NN, Sisler HD: Mode of action of triarimol in Ustilago maydis. Pestic Biochem Physiol 3: 20–29, 1973.Google Scholar
  103. 103.
    Rivière J-L: Prochloraz, a potent inducer of the microsomal cytochrome P-450 system. Pestic Biochem Physiol 19: 44–52, 1983.Google Scholar
  104. 104.
    Roberts RL, Blowers B, Slater ML, Cabib E: Chitin synthesis and localization in cell division cycle mutants of Saccharomyces cerevisiae. Molec Cell Biol 3: 922–930, 1983.Google Scholar
  105. 105.
    Rogers HJ, Perkins HR, Ward JB: Biosynthesis of Cell Walls and Membranes, London, Chapman and Hall, 1980, pp 478–507.Google Scholar
  106. 106.
    Rothman JE, Engelman DM: Molecular mechanism for the interaction of phospholipid with cholesterol. Nature 237: 42–44, 1972.Google Scholar
  107. 107.
    Saito Y, Silbert DF: Selective effects of membrane sterol depletion on surface function, thymidine and 3-O-methyl-D-glucose transport in a sterol auxotroph. J Biol Chem 254: 1102–1107, 1979.PubMedGoogle Scholar
  108. 108.
    Sandermann H Jr: Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515: 209–237, 1978.PubMedGoogle Scholar
  109. 109.
    Schenkman JB, Sligar SG, Cinti DL: Substrate interaction with cytochrome P-450, in Schenkman JB, Kupfer D (eds): Hepatic Cytochrome P-450 Monoxygenase System. Oxford, Pergamon Press, 1982, pp 587–615.Google Scholar
  110. 110.
    Sekiya T, Nozawa Y: Reorganization of membrane ergosterol during cell fission events of Candida albicans: A freeze-fracture study of distribution of filipin-ergosterol complexes. J Ultrastruct Res 83: 48–57, 1983.PubMedGoogle Scholar
  111. 111.
    Sherald JL, Sisler HD: Antifungal mode of action of triforine. Pestic Biochem Physiol 5: 477–488, 1975.Google Scholar
  112. 112.
    Sherald JL, Ragsdale NN, Sisler HD: Similarities between the systemic fungicides triforine and triarimol. Pestic Sci 4: 719–727, 1973.Google Scholar
  113. 113.
    Shigematsu ML, Uno J, Arai T: Effect of ketoconazole on isolated mitochondria from Candida albicans. Antimicrob Agents Chemother 21: 919–924, 1982.Google Scholar
  114. 114.
    Siegel MR, Ragsdale NN: Antifungal mode of action of imazalil. Pestic Biochem Physiol 9: 48–56, 1978.Google Scholar
  115. 115.
    Siegel MR, Solel Z: Effects of imazalil on a wild-type and fungicide-resistant strain of Aspergillus nidulans. Pestic Biochem Physiol 15: 222–233, 1981.Google Scholar
  116. 116.
    Sinensky M, Minneman KP, Molinoff PB: Increased membrane acyl chain ordering activates adenylate cyclase. J Biol Chem 254: 9135–9141, 1979.PubMedGoogle Scholar
  117. 117.
    Sinensky M, Pinkerton F, Sutherland E, Simon FR: Rate limitation of (Na+ + K+)-stimulated adenosinetriphosphatase by membrane acyl chain ordering. Proc. Natl Acad Sci USA 76: 4893–4897, 1979.PubMedGoogle Scholar
  118. 118.
    Sisler HD, Ragsdale NN: Fungitoxicity and growth regulation involving aspects of lipid biosynthesis. Neth J Plant Pathol 83 (Suppl 1): 81–91, 1976.Google Scholar
  119. 119.
    Sisler HD, Walsh RC, Ziogas BW: Ergosterol biosynthesis: A target of fungitoxic action, in Matsunaka S, Hutson DH, Murphy SD (eds): Pesticide Chemistry: Human Welfare and the Environment: Mode of Action, Metabolism and Toxicology. New York, Pergamon Press, 1983, vol 3, pp 129–134.Google Scholar
  120. 120.
    Sreedhara Swamy KH, Sirsi M, Rao R: Studies on the mechanism of action of miconazole: Effect of miconazole on respiration and cell permeability of Candida albicans. Antimicrob Agents Chemother 5: 420–425, 1974.Google Scholar
  121. 121.
    Sreedhara Swamy KH, Sirsi M, Rao R: Studies on the mechanism of action of miconazole. II. Interaction of miconazole with mammalian erythrocytes. Biochem Pharmacol 25: 1145–1150, 1976.Google Scholar
  122. 122.
    Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R: Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565–4569, 1974.PubMedGoogle Scholar
  123. 123.
    Sud IJ, Feingold DS: Heterogeneity of action mechanisms among the antimycotic imidazoles. Antimicrob Agents Chemother 20: 71–74, 1981.PubMedGoogle Scholar
  124. 124.
    Testa B, Jenner P: Inhibition of cytochrome P-450 and their mechanism of action. Drug Metab Rev 12: 1–117, 1981.PubMedGoogle Scholar
  125. 125.
    Thienpont D, Van Cutsem J, Van Cauteren H, Marsboom R: The biological and toxicological properties of imazalil. Arzneim Forsch 31: 309–315, 1981.Google Scholar
  126. 126.
    Thompson ED, Parks LW: Lipids associated with cytochrome oxidase derived from yeast mitochondria. Biochim Biophys Acta 260: 601–607, 1972.PubMedGoogle Scholar
  127. 127.
    Thompson ED, Parks LW: The effect of altered sterol composition on cytochrome oxidase and 5-adenosylmethionine: 024 sterol methyltransferase enzymes of yeast mitochondria. Biochem Biophys Res Commun 57: 1207–1213, 1974.PubMedGoogle Scholar
  128. 128.
    Thompson ED, Parks LW: Effects of altered sterol composition on growth characteristics of Saccharomyces cerevisiae. J Bacteriol 120: 779–784, 1974.PubMedGoogle Scholar
  129. 129.
    Thompson ED, Bailey RB, Parks LW: Subcellular location of 5-adenosylmethionine: O24-sterol methyltransferase in Saccharomyces cerevisiae. Biochim Biophys Acta 334: 116–126, 1974.Google Scholar
  130. 130.
    Thurman RG, Scholz R: Interaction of mixed-function oxidation with biosynthetic processes. 2. Inhibition of lipogenesis by aminopyrines in per-fused rat liver. Eur J Biochem 38: 73–78, 1973.PubMedGoogle Scholar
  131. 131.
    Uno J, Shigematsu ML, Arai T: Primary site of action of ketoconazole on Candida albicans. Antimicrob Agents Chemother 21: 912–918, 1982.PubMedGoogle Scholar
  132. 132.
    Vanden Bossche H: Biochemical effects of miconazole on fungi. I. Effects on the uptake and/or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Biochem Pharmacol 23: 887–899, 1974.PubMedGoogle Scholar
  133. 133.
    Vanden Bossche H, Willemsens G, Van Cutsem J: The action of miconazole on the growth of Candida albicans. Sabouraudia 13: 63–73, 1975.Google Scholar
  134. 134.
    Vanden Bossche H, Willemsens G, Cools W, Lauwers WFJ, Le Jeune L: Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact 21: 59–78, 1978.PubMedGoogle Scholar
  135. 135.
    Vanden Bossche H, Willemsens G, Cools W, Lauwers WFJ, Le Jeune L: Inhibition of ergosterol biosynthesis in Candida albicans by miconazole, in Siegenthaler W, Lüthy R (eds): Current Chemotherapy-Proceedings of the 10th International Congress of Chemotherapy, Zürich 1977. Washington DC, American Society for Microbiology, 1978, pp 228–230.Google Scholar
  136. 136.
    Vanden Bossche H, Willemsens G, Cools W, Cornelissen F: Inhibition of ergosterol synthesis in Candida albicans by ketoconazole. Arch Int Physiol Biochim 87: 849–850, 1979.Google Scholar
  137. 137.
    Vanden Bossche H, Willemsens G, Cools W, Cornelissen F, Lauwers WF, Van Cutsem JM: In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 17: 922–928, 1980.PubMedGoogle Scholar
  138. 138.
    Vanden Bossche H, Willemsens G, Cools W, Lauwers WF: Effects of miconazole on the fatty-acid pattern in Candida albicans. Arch Int Physiol Biochim. 89: B134, 1981.Google Scholar
  139. 139.
    Van den Bossche H, Willemsens G: Effects of the antimycotics, miconazole and ketoconazole, on cytochrome P-450 in yeast microsomes and rat liver microsomes. Arch Int Physiol Biochim 90: B218 - B219, 1982.Google Scholar
  140. 140.
    Vanden Bossche H, Ruysschaert JM, Defrise-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J: The interaction of miconazole and ketoconazole with lipids. Biochem Pharmacol 31: 2609–2617, 1982.PubMedGoogle Scholar
  141. 141.
    Vanden Bossche H, Lauwers W, Willemsens G, Marichal P, Cornelissen F, Cools W: Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles. Inhibition of isoprenoid biosynthesis. Pestic Sci 15: 188–198, 1983.Google Scholar
  142. 142.
    Vanden Bossche H, Willemsens G, Marichal P, Cools W, Lauwers W: The molecular basis for the antifungal activities of N-substituted azole derivatives. In Trinci APJ, Ryley JF (eds): Symposium of British Society of Mycology. Mode of Action of Antifungal Agents. Cambridge University Press, Cambridge, 1984, pp 321–341.Google Scholar
  143. 143.
    Vanden Bossche H, Marichal P, Lauwers WF, Willemsens G: Biochemical differences between yeast and mycelia. Do they determine the antimycotic activity of ketoconazole? In Spitzy KH, Karrer K (eds): Proceedings 13th International Congress of Chemotherapy. Vienna, 1983, PS 4, 8:3–9.Google Scholar
  144. 144.
    Vanden Bossche H, Willemsens G, Cools W, Marichal P, Lauwers W: Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans 11: 665–667, 1983.PubMedGoogle Scholar
  145. 145.
    Vik SB, Capaldi RA: Lipid requirements for cytochrome c oxidase activity. Biochemistry 16: 5755–5759, 1977.PubMedGoogle Scholar
  146. 146.
    Walsh RC, Sisler HD: A sterol C-14 demethylase deficient mutant of Usti-lago maydis (abstract). Phytopathology 72: 711, 1982.Google Scholar
  147. 147.
    Weete JD: Sterols of the fungi: Distribution and biosynthesis. Phytochemistry 12: 1843–1864, 1973.Google Scholar
  148. 148.
    Weete JD: Lipid Biochemistry of Fungi and Other Organisms. New York, Plenum Press, 1980.Google Scholar
  149. 149.
    Weete JD, Sancholle MS, Montant C: Effects of triazoles on fungi: II. Lipid composition of Taphrina deformans. Biochim Biophys Acta 752: 19–29, 1983.Google Scholar
  150. 150.
    White RE, Coone MJ: Oxygen activation by cytochrome P-450. Ann Rev Biochem 49: 315–356, 1980.PubMedGoogle Scholar
  151. 151.
    Wiggins T, Baldwin BC: Binding of azole fungicides related to diclobutrazol, to cytochrome P-450. Pestic Sci 15: 206–209, 1984.Google Scholar
  152. 152.
    Wilkinson, CF, Hetnarski K, Yellin TO: Imidazole derivatives-A new class of microsomal enzyme inhibitors. Biochem Pharmacol 21: 3187–3192, 1972.PubMedGoogle Scholar
  153. 153.
    Wilkinson CF, Hetnarski K, Hicks LJ: Substituted imidazoles as inhibitors of microsomal oxidation and insecticide synergists. Pestic Biochem Physiol 4: 299–312, 1974.Google Scholar
  154. 154.
    Wilm K, Stahl AJC: Effects of econazole nitrate on yeast cells and mitochondria. Biochem Pharmacol 32: 1825–1830, 1983.PubMedGoogle Scholar
  155. 155.
    Willemsens G, Cools W, Vanden Bossche H: Effects of miconazole and ketoconazole on sterol synthesis in a subcellular fraction of yeast and mammalian cells, in Vanden Bossche H (ed): The Host Invader Interplay. Amsterdam, Elsevier/North-Holland Biomedical Press, 1980, pp 691–694.Google Scholar
  156. 156.
    Yamaguchi H: Protection by unsaturated lecithin against the imidazole antimycotics clotrimazole and miconazole. Antimicrob Agents Chemother 13: 423–426, 1978.PubMedGoogle Scholar
  157. 157.
    Yoshida Y, Kumaoka H, Sato R: Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localization and characterization. J Biochem 78: 1201–1210, 1974.Google Scholar
  158. 158.
    Yoshida Y, Aoyama Y, Kumaoka H, Kubota S: A highly purified preparation of cytochrome P-450 from microsomes of anaerobically grown yeast. Biochem Biophys Res Commun 78: 1005–1010, 1977.PubMedGoogle Scholar
  159. 159.
    Young JW, Shrago E, Lardy HA: Metabolic control of enzymes involved in lipogenesis and glycogenesis. Biochemistry 3: 1687–1692, 1964.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1985

Authors and Affiliations

  • Hugo Vanden Bossche

There are no affiliations available

Personalised recommendations