Abstract
We survey the status of the problem of determining which differentiable manifolds (without boundary) have Riemannian metrics of positive scalar curvature. Of course, if the manifold is non-compact, one requires the metric to be complete.
Key words and phrases
- positive scalar curvature
- real K-theory
- spin manifold
- spin cobordism
- Dirac operator
- assembly map
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
D.W. Anderson, E.H. Brown, Jr., and F.P. Peterson, The structure of the spin cobordism ring, Ann. of Math. 86 (1967), 271–298.
D.W. Anderson, E.H. Brown, Jr., and F.P. Peterson, Pin cobordism and related topics, Comment. Math. Heiv. 44 (1969), 462–468.
J.F. Adams and S. Priddy, Uniqueness of BSO, Math. Proc. Cambridge Philos. Soc. 80 (1978), 475–509.
T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer-Verlag, New York, 1982.
L. Berard Bergery, Scalar curvature and isometry group, Spectra of Riemannian manifolds, ed. by M. Berger, S. Murakami and T. Ochiai, Proc. Franco-Japanese Seminar on Riemannian Geometry, Kyoto, 1981, Kagai, Tokyo, 1983, pp. 9–28.
A.L. Besse, Einstein manifolds, Spinger Verlag, Berlin and New York, 1986.
J.M. Boardman, Stable homotopy theory, mimeographed notes, Warwick (1966).
R. Brooks, The A-genus of complex hypersurfaces and complete intersections, Proc. Amer. Math. Soc. 87 (1983), 528–532.
A. Connes, M. Gromov and H. Moscovici, Conjecture de Novikov et fibrés presques plats, C.R. Acad. Sci. Paris, Sér. I Math. 310 (1990), 273–277.
A. Connes and H. Moscovici, Conjecture de Novikov et groupes hyperboliques, C.R. Acad. Sci. Paris, Sér. I Math. 307 (1988), 475–480.
V. Giambalvo, Pin and Pin’ cobordism, Proc. Amer. Math. Soc. 39 (1973), 395–401.
M. Gromov, Stable mappings of foliations into manifolds, Math. USSR—Izv. 3 (1969), 671–694.
M. Gromov and H.B. Lawson, Jr., Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980), 209–230.
M. Gromov The classification of simply connected manifolds of positive scalar cur-vature,Ann. of Math. 111 (1980), 423–434.
M. Gromov, Positive scalar curvature and the Dirac operator on complete Riemann-ian manifolds,Publ. Math.I.H.E.S. (1983), no. no. 58, 83–196.
N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1–55.
G.G. Kasparov, Equivariant KK-theory and the Novikov Conjecture, Invent. Math. 91 (1988), 147–201.
G.G. Kasparov and G. Skandalis, Groups acting on buildings, operator K-theory, and Novikov’s conjecture, preprint, 1989.
J.L. Kazdan, Prescribing the curvature of a Riemannian manifold, Conf. Board of the Math. Sciences, American Mathematical Society, Providence, R.I., 1985.
J.L. Kazdan and F.W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann of Math. 101 (1975), 317–331.
J.L. Kazdan,Scalar curvature and conformal deformation of Riemannian stricture,J. Diff. Geom. 10 (1975), 113–134.
M. Kreck, Duality and surgery,preprint.
M. Kreck and S. Stolz, IHIIP 2 -bundles and elliptic homology,preprint.
S. Kwasik and R. Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helvetici 65 (1990), 271–286.
H.B. Lawson, Jr. and M.-L. Michelson, Spin Geometry, Princeton Math. Series, no. 38, Princeton Univ. Press, Princeton, N.J., 1989.
H.B. Lawson, Jr. and S.-T. Yau, Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres, Comment. Math. Helvetici 49 (1974), 232–244.
M. Lewkowicz, Positive scalar curvature and local actions of nonabelian Lie groups, J. Differential Geometry 31 (1990), 29–45.
A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Sér. A-B 257 (1963), 7–9.
J.-L. Loday, K-théorie algébrique et représentations des groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), 309–377.
M. Mahowald, The image of J in the EHP-sequence, Ann. of Math. 116 (1982), 65–112.
C.A. Mann, Jr., A twenty-four dimensional spin manifold, Ph.D. Dissertation, Mass. Inst. of Technology, Cambridge, Mass., 1969.
H.R. Margolis, Eilenberg-MacLane spectra, Proc. Am. Math. Soc. 43 (1974), 409–415.
V. Mathai, Non-negative scalar curvature, preprint, University of Adelaide, 1990.
J. Milnor, On the Stiefel-Whitney numbers of complex and spin manifolds, Topology 3 (1965), 223–230.
Lectures on the h-cobordism theorem,Mathematical Notes, Princeton University Press, Princeton, 1965.
T. Miyazaki, On the existence of positive scalar curvature metrics on nonsimply-connected manifolds, J. Fac. Sci. Univ. Tokyo, Sect. IA 30 (1984), 549–561.
Simply connected spin manifolds and positive scalar curvature,Proc. Amer. Math. Soc. 93 (1985), 730–734.
H. Moriyoshi, Positive scalar curvature and higher A-genus, J. Fac. Sci. Univ. Tokyo, Sect. IA 35 (1988), 199–224.
D.J. Pengelley, H* (MO 8 ; Z/2) is an extended AZ-coalgebra,Proc. Am.Math. Soc. 87 (1983), 355–356.
J. Roe, An index theorem on open manifolds, II, J. Differential Geom. 27 (1988), 115–136.
J. Roe, Exotic cohomology and index theory,Bull. Amer. Math. Soc. 23 (1990), 447–453.
J. Roe, Exotic cohomology and index theory on complete Riemannian mani-folds,preprint (1990).
J. Rosenberg, CC*-algebras, positive scalar curvature, and the Novikov Conjecture, Publ. Math. I.H.E.S. (1983), no. no. 58, 197–212.
J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov Conjecture, II, Geometric Methods in Operator Algebras, H. Araki and E.G. Effros, eds., Pitman Research Notes in Math., no. 123, Longman/Wiley, Harlow, Essex, England and New York, 1986, pp. 341–374.
J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov Conjecture, III, Topology 25 (1986), 319–336.
J. Rosenberg, The KO-assembly map and positive scalar curvature, Proc. Interna- tional Conf. on Algebraic Topology, Poznan, 1989, S. Jackowski, R. Oliver, and K. Pawalowski, eds., Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).
R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479–495.
R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds of non-negative scalar curvature, Ann. of Math. 110 (1979), 127–142.
R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscrip-ta Math. 28 (1979), 159–183.
R. Schultz, private communication.
S. Stolz, Simply connected manifolds of positive scalar curvature, Bull. Amer. Math. Soc. 23 (1990), 427–432.
S. Stolz, Simply connected manifolds of positive scalar curvature,preprint.
S. Stolz, Splitting MSpin-module spectra,preprint.
R.E. Stong, Notes on Cobordism Theory, Mathematical Notes, no. 7, Princeton Univ. Press, Princeton, N.J., 1968.
R.M. Switzer, Algebraic Topology — Homotopy and Homology, Spinxger Verlag, Berlin and New York, 1975.
C.T. C. Wall, Determination of the cobordism ring, Ann. of Math. 72 (1969), 292–311.
J.A. Wolf, Essential self-adjointness for the Dirac operator and its square, In-diana Univ. Math.J. 22 (1973), 611–640.
S.-T. Yau, Minimal surfaces and their role in differential geometry, Global Riemannian Geometry, T.J. Willmore and N.J. Hitchin, eds., Ellis Horwood and Halsted Press, Chichester, England, and New York, 1984, pp. 99–103.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1994 Springer-Verlag New York, Inc.
About this paper
Cite this paper
Rosenberg, J., Stolz, S. (1994). Manifolds of Positive Scalar Curvature. In: Carlsson, G.E., Cohen, R.L., Hsiang, WC., Jones, J.D.S. (eds) Algebraic Topology and Its Applications. Mathematical Sciences Research Institute Publications, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9526-3_8
Download citation
DOI: https://doi.org/10.1007/978-1-4613-9526-3_8
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4613-9528-7
Online ISBN: 978-1-4613-9526-3
eBook Packages: Springer Book Archive