Skip to main content

Manifolds of Positive Scalar Curvature

  • Conference paper

Part of the Mathematical Sciences Research Institute Publications book series (MSRI,volume 27)

Abstract

We survey the status of the problem of determining which differentiable manifolds (without boundary) have Riemannian metrics of positive scalar curvature. Of course, if the manifold is non-compact, one requires the metric to be complete.

Key words and phrases

  • positive scalar curvature
  • real K-theory
  • spin manifold
  • spin cobordism
  • Dirac operator
  • assembly map

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.W. Anderson, E.H. Brown, Jr., and F.P. Peterson, The structure of the spin cobordism ring, Ann. of Math. 86 (1967), 271–298.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. D.W. Anderson, E.H. Brown, Jr., and F.P. Peterson, Pin cobordism and related topics, Comment. Math. Heiv. 44 (1969), 462–468.

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. J.F. Adams and S. Priddy, Uniqueness of BSO, Math. Proc. Cambridge Philos. Soc. 80 (1978), 475–509.

    CrossRef  MathSciNet  Google Scholar 

  4. T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer-Verlag, New York, 1982.

    CrossRef  MATH  Google Scholar 

  5. L. Berard Bergery, Scalar curvature and isometry group, Spectra of Riemannian manifolds, ed. by M. Berger, S. Murakami and T. Ochiai, Proc. Franco-Japanese Seminar on Riemannian Geometry, Kyoto, 1981, Kagai, Tokyo, 1983, pp. 9–28.

    Google Scholar 

  6. A.L. Besse, Einstein manifolds, Spinger Verlag, Berlin and New York, 1986.

    Google Scholar 

  7. J.M. Boardman, Stable homotopy theory, mimeographed notes, Warwick (1966).

    Google Scholar 

  8. R. Brooks, The A-genus of complex hypersurfaces and complete intersections, Proc. Amer. Math. Soc. 87 (1983), 528–532.

    MATH  MathSciNet  Google Scholar 

  9. A. Connes, M. Gromov and H. Moscovici, Conjecture de Novikov et fibrés presques plats, C.R. Acad. Sci. Paris, Sér. I Math. 310 (1990), 273–277.

    MATH  MathSciNet  Google Scholar 

  10. A. Connes and H. Moscovici, Conjecture de Novikov et groupes hyperboliques, C.R. Acad. Sci. Paris, Sér. I Math. 307 (1988), 475–480.

    MATH  MathSciNet  Google Scholar 

  11. V. Giambalvo, Pin and Pin’ cobordism, Proc. Amer. Math. Soc. 39 (1973), 395–401.

    MATH  MathSciNet  Google Scholar 

  12. M. Gromov, Stable mappings of foliations into manifolds, Math. USSR—Izv. 3 (1969), 671–694.

    CrossRef  MATH  Google Scholar 

  13. M. Gromov and H.B. Lawson, Jr., Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980), 209–230.

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. M. Gromov The classification of simply connected manifolds of positive scalar cur-vature,Ann. of Math. 111 (1980), 423–434.

    Google Scholar 

  15. M. Gromov, Positive scalar curvature and the Dirac operator on complete Riemann-ian manifolds,Publ. Math.I.H.E.S. (1983), no. no. 58, 83–196.

    Google Scholar 

  16. N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1–55.

    MATH  MathSciNet  Google Scholar 

  17. G.G. Kasparov, Equivariant KK-theory and the Novikov Conjecture, Invent. Math. 91 (1988), 147–201.

    MATH  MathSciNet  Google Scholar 

  18. G.G. Kasparov and G. Skandalis, Groups acting on buildings, operator K-theory, and Novikov’s conjecture, preprint, 1989.

    Google Scholar 

  19. J.L. Kazdan, Prescribing the curvature of a Riemannian manifold, Conf. Board of the Math. Sciences, American Mathematical Society, Providence, R.I., 1985.

    Google Scholar 

  20. J.L. Kazdan and F.W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann of Math. 101 (1975), 317–331.

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. J.L. Kazdan,Scalar curvature and conformal deformation of Riemannian stricture,J. Diff. Geom. 10 (1975), 113–134.

    Google Scholar 

  22. M. Kreck, Duality and surgery,preprint.

    Google Scholar 

  23. M. Kreck and S. Stolz, IHIIP 2 -bundles and elliptic homology,preprint.

    Google Scholar 

  24. S. Kwasik and R. Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helvetici 65 (1990), 271–286.

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. H.B. Lawson, Jr. and M.-L. Michelson, Spin Geometry, Princeton Math. Series, no. 38, Princeton Univ. Press, Princeton, N.J., 1989.

    Google Scholar 

  26. H.B. Lawson, Jr. and S.-T. Yau, Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres, Comment. Math. Helvetici 49 (1974), 232–244.

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. M. Lewkowicz, Positive scalar curvature and local actions of nonabelian Lie groups, J. Differential Geometry 31 (1990), 29–45.

    MathSciNet  Google Scholar 

  28. A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Sér. A-B 257 (1963), 7–9.

    MATH  MathSciNet  Google Scholar 

  29. J.-L. Loday, K-théorie algébrique et représentations des groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), 309–377.

    MATH  MathSciNet  Google Scholar 

  30. M. Mahowald, The image of J in the EHP-sequence, Ann. of Math. 116 (1982), 65–112.

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. C.A. Mann, Jr., A twenty-four dimensional spin manifold, Ph.D. Dissertation, Mass. Inst. of Technology, Cambridge, Mass., 1969.

    Google Scholar 

  32. H.R. Margolis, Eilenberg-MacLane spectra, Proc. Am. Math. Soc. 43 (1974), 409–415.

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. V. Mathai, Non-negative scalar curvature, preprint, University of Adelaide, 1990.

    Google Scholar 

  34. J. Milnor, On the Stiefel-Whitney numbers of complex and spin manifolds, Topology 3 (1965), 223–230.

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. Lectures on the h-cobordism theorem,Mathematical Notes, Princeton University Press, Princeton, 1965.

    Google Scholar 

  36. T. Miyazaki, On the existence of positive scalar curvature metrics on nonsimply-connected manifolds, J. Fac. Sci. Univ. Tokyo, Sect. IA 30 (1984), 549–561.

    MATH  MathSciNet  Google Scholar 

  37. Simply connected spin manifolds and positive scalar curvature,Proc. Amer. Math. Soc. 93 (1985), 730–734.

    Google Scholar 

  38. H. Moriyoshi, Positive scalar curvature and higher A-genus, J. Fac. Sci. Univ. Tokyo, Sect. IA 35 (1988), 199–224.

    MATH  MathSciNet  Google Scholar 

  39. D.J. Pengelley, H* (MO 8 ; Z/2) is an extended AZ-coalgebra,Proc. Am.Math. Soc. 87 (1983), 355–356.

    Google Scholar 

  40. J. Roe, An index theorem on open manifolds, II, J. Differential Geom. 27 (1988), 115–136.

    MathSciNet  Google Scholar 

  41. J. Roe, Exotic cohomology and index theory,Bull. Amer. Math. Soc. 23 (1990), 447–453.

    Google Scholar 

  42. J. Roe, Exotic cohomology and index theory on complete Riemannian mani-folds,preprint (1990).

    Google Scholar 

  43. J. Rosenberg, CC*-algebras, positive scalar curvature, and the Novikov Conjecture, Publ. Math. I.H.E.S. (1983), no. no. 58, 197–212.

    Google Scholar 

  44. J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov Conjecture, II, Geometric Methods in Operator Algebras, H. Araki and E.G. Effros, eds., Pitman Research Notes in Math., no. 123, Longman/Wiley, Harlow, Essex, England and New York, 1986, pp. 341–374.

    Google Scholar 

  45. J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov Conjecture, III, Topology 25 (1986), 319–336.

    Google Scholar 

  46. J. Rosenberg, The KO-assembly map and positive scalar curvature, Proc. Interna- tional Conf. on Algebraic Topology, Poznan, 1989, S. Jackowski, R. Oliver, and K. Pawalowski, eds., Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).

    Google Scholar 

  47. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479–495.

    MATH  MathSciNet  Google Scholar 

  48. R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds of non-negative scalar curvature, Ann. of Math. 110 (1979), 127–142.

    CrossRef  MATH  MathSciNet  Google Scholar 

  49. R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscrip-ta Math. 28 (1979), 159–183.

    Google Scholar 

  50. R. Schultz, private communication.

    Google Scholar 

  51. S. Stolz, Simply connected manifolds of positive scalar curvature, Bull. Amer. Math. Soc. 23 (1990), 427–432.

    CrossRef  MATH  MathSciNet  Google Scholar 

  52. S. Stolz, Simply connected manifolds of positive scalar curvature,preprint.

    Google Scholar 

  53. S. Stolz, Splitting MSpin-module spectra,preprint.

    Google Scholar 

  54. R.E. Stong, Notes on Cobordism Theory, Mathematical Notes, no. 7, Princeton Univ. Press, Princeton, N.J., 1968.

    Google Scholar 

  55. R.M. Switzer, Algebraic Topology — Homotopy and Homology, Spinxger Verlag, Berlin and New York, 1975.

    MATH  Google Scholar 

  56. C.T. C. Wall, Determination of the cobordism ring, Ann. of Math. 72 (1969), 292–311.

    CrossRef  Google Scholar 

  57. J.A. Wolf, Essential self-adjointness for the Dirac operator and its square, In-diana Univ. Math.J. 22 (1973), 611–640.

    MATH  Google Scholar 

  58. S.-T. Yau, Minimal surfaces and their role in differential geometry, Global Riemannian Geometry, T.J. Willmore and N.J. Hitchin, eds., Ellis Horwood and Halsted Press, Chichester, England, and New York, 1984, pp. 99–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Rosenberg, J., Stolz, S. (1994). Manifolds of Positive Scalar Curvature. In: Carlsson, G.E., Cohen, R.L., Hsiang, WC., Jones, J.D.S. (eds) Algebraic Topology and Its Applications. Mathematical Sciences Research Institute Publications, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9526-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9526-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9528-7

  • Online ISBN: 978-1-4613-9526-3

  • eBook Packages: Springer Book Archive