Skip to main content

Orthogonalization-Triangularization Methods in Statistical Computations

  • Conference paper

Abstract

Procedures for reducing a data matrix to triangular form using orthogonal transformations are presented, e.g., Householder, Givens, and examples these procedures are compard to procedure operating on normal equations. We show how an analysis of variance can be constructed from the triangular reduction of the data matrix. Procedures for calculating sums of squares, degrees of freedom, and expected mean squares are presented. These procedures apply even with mixed models and missing data. It is demonstrated that all statistics needed for inference on linear combinations of parameters of a linear model may be calculated from the triangular reduction of the data matrix. Also included is a test for estimability. We also demonstrate that if the computations are done properly some inference is warranted even when the X matrix is ill-conditioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALLEN, D.M. (1974). “Estimability, Estimates, and Variances for Linear Models” Biometrics Unit Report, BU-529-M, Cornell University, Ithaca, New York.

    Google Scholar 

  • ALLEN, D.M. (1977). “Computational Methods for Estimation of Linear Combinations of Parameters.” Proceedings of the Statistical Computing Section of the American Statistical Association, August, 1977.

    Google Scholar 

  • BANACHIEWICZ, T. (1937). “Calcul des de’terminants par la me’thode des Eracouiens” Acad. Polon. Sci. (Bull. Int.) A, pp. 109–120.

    Google Scholar 

  • BELSLEY, D.A., E. Kuh and R.E. Welsh Regression Diagnostics, New York: John Wiley and Sons

    Google Scholar 

  • BENOIT (From Commander Cholesky) (1924). “Note sur une me’thode de re’solution des e’quations normales” Bulletin Geodesique #2:5–77.

    Google Scholar 

  • BOYER, C.B. (1968). A History of Mathematics. New York, John Wiley & Sons, Inc.

    MATH  Google Scholar 

  • BRYCE, G.R. and D.M. Allen (1972). “The distribution of some statistics arising from the factorization of the normal equations of mixed models.” Department of Statistics Technical Report No. 35, University of Kentucky, Lexington, Kentucky.

    Google Scholar 

  • BRYCE, G.R. (1979). “A simplified computational procedure for Yates’ method of weighted squares of means.” BYU Statistics Report No. SD-011-R, Brigham Young University.

    Google Scholar 

  • BRYCE, G.R., M.W. Carter and D. T. Scott (1979). “Reparameterization of the Cell Means Model and The Calculation of Expected Mean Squares.” Proceedings of the Statistical Computations Section of the American Statistical Association, Aug. 1979, (BYU Tech. Report No. SD-012-R.)

    Google Scholar 

  • BRYCE, G.R., D. T. Scott, and M.W. Carter (1980). “Estimation and Hypotheses Testing in Linear Models — A Reparameterization Approach to the Cell Means Model.” Communications in Statistics — Theor. Meth. A9(2):131–150.

    Article  MathSciNet  Google Scholar 

  • BRYCE, G.R., M.W. Carter and D. T. Scott (1980). “Recovery of Estimability in Fixed Models with Missing Cells.” Invited paper presented at the ASA meetings August, 1980 in Houston, Texas. (BYU Tech. Report No. SD-022-R.)

    Google Scholar 

  • CHAKRAVARTI, I.M., R.G. Laha and J. Roy (1967). Handbook of Methods of Applied Statistics, Vol. I. New York, John Wiley and Sons.

    MATH  Google Scholar 

  • CHAMBERS, J.M. (1977). Computational methods for Data Analysis. New York, John Wiley and Sons.

    Google Scholar 

  • CUMMINGS, W.G. and D.W. Gaylor (1974). “Variance Component Testing in Unbalanced Nested Designs.” Journal of the American Statistical Associations 69:765–771.

    Article  MATH  Google Scholar 

  • DOOLITTLE, M.H. (1878). “Method employed in the solution of normal equations and the adjustment of a triangulation.” U.S. Coast and Geodetic Survey Report (1878). pp. 115- 120.

    Google Scholar 

  • DWYER, P.S. (1941). “The Doolittle Technique.” Annals of Math. Stat. 12:449- 458.

    Article  MathSciNet  MATH  Google Scholar 

  • DWYER, P.S. (1944). “A Matrix Presentation of Least Squares and Correlation Theory with Matrix Justification of Improved Methods of Solution.” Annals of Math. Stat. 15:82–89.

    Article  MathSciNet  MATH  Google Scholar 

  • DWYER, P.S. (1945). “The Square Root Method and Its Use in Correlation and Regression.” Journal of the American Statistical Association. 40:493–503.

    Article  MathSciNet  MATH  Google Scholar 

  • DWYER, P.S. (1951). Linear Computations. New York, John Wiley and Sons, Inc.

    MATH  Google Scholar 

  • FRANCIS, I. (1973). “A Comparison of Several Analysis of Variance Programs.” Journal of the American Statistical Association. 68:860–871.

    Article  Google Scholar 

  • GAUS, C.F. (1873). “Supplementom Theoriae Combinationis Obervationum Erroribus Minimis Obnoxiae” Werke, 15 (Gaus lived 1775–1855)

    Google Scholar 

  • GAYLOR, D.W., H.L. Lucas and R.L. Anderson (1970). “Calculation of Expected Mean Squares by the Abbreviated Doolittle and Square Root Methods.” Biometrics, 26:641- 655.

    Article  MathSciNet  Google Scholar 

  • GENTLEMAN, W.M. (1972). “Least Squares Computations by Givens Transformations Without Square Roots.” University of Waterloo Report (SRR-2062, Waterloo, Ontario, Canada.

    Google Scholar 

  • GIVENS, W. (1954). “Numerical computation of the characteristic values of a real symmetric matrix.” Report ORNL-1954, Oak Ridge Associated Universities, Oak Ridge, Tennessee.

    MATH  Google Scholar 

  • GRAYBILL, F.A. (1969). Introduction to Matrices with Applications in Statistics. Belmont, California: Wadsworth Publishing Company, Inc.

    Google Scholar 

  • GRAYBILL, F.A. (1976). Theory and Application of the Linear Model, North Scituate, Mass.: Duxbury Press.

    Google Scholar 

  • HARTLEY, H.O. (1967) “Expectations, Variances and Covariances of Anova Mean Squares by ’Synthesis’” Biometrics, 23:105–114.

    Article  MathSciNet  Google Scholar 

  • HEMMERLE, W.J. (1974). “Nonorthogonal Analysis of Variance Using Interative Improvement and Balanced Residuals.” Journal of the American Statistical Association. 69: 772- 779.

    Article  MathSciNet  MATH  Google Scholar 

  • HEMMERLE, W.J. (1976). “Iterative Nonorthogonal Analysis of Variance of Covariance.” Journal of the American Statistical Association 71:195–199.

    Article  MathSciNet  MATH  Google Scholar 

  • HOCKING, R.R. and F.M. Speed (1975). “A Full Rank Anaysis of Some Linear Model Problems.” Journal of the American Statistical Association. 70: 706–712

    Article  MathSciNet  MATH  Google Scholar 

  • HOUSEHOLDER, A.S. (1958). Unitary triangularization of a non-symmetric matrix, Journal of A.C.M, 5:339–342.

    MathSciNet  MATH  Google Scholar 

  • KENNEDY, W.J. and J.E. Gentle (1980). Statistical Computing, New York: Marcel Dekker, Inc.

    MATH  Google Scholar 

  • KUTNER, M.H. (1974). Hypotheses Testing in Linear Models. The American Statistician, 28:98–100.

    Article  Google Scholar 

  • LAWSON, C.L. and R.J. Hanson (1974). “Solving Least Squares Problems” New Jersey: Prentice-Hall Inc.

    MATH  Google Scholar 

  • LUCAS, H.L. (1950) “A method of estimating components of variance in disproportionate numbers” Ann. Math. Statist. 21,304.

    Google Scholar 

  • ROHDE, C.A. and J.R. Harvey (1965). “Unified Least Squares Analyses, Jour. Am. Stat. Assoc., 60:523–527.

    Article  MathSciNet  Google Scholar 

  • SCHUR, J. (1917). “Über Potenzreihen due cm Innern des Einheitskreises beschrankt sind” Crelle’s Journal f. reine u. ange. Math 147:205–232.

    Article  Google Scholar 

  • SEARLE, S.R. (1971). Linear Models. New York: John Wiley & Sons, Inc.

    MATH  Google Scholar 

  • SEARLE, S. R., G.A. Milliken and F.M. Speed (1979). “Expected marginal means in the linear model.” Biometrics Unit Report No. BU-672-M, Cornell University, Ithaca, New York.

    Google Scholar 

  • SEBER, G.A.F. (1977). Linear Regression Analysis, New York, John Wiley & Sons, Inc.

    MATH  Google Scholar 

  • SPEED, F.M., R.R. Hocking, and O.P. Hackney (1978). “Methods of Analysis of Linear Models with Unbalanced Data.” J. Amer. Stat. Assoc, 73:105–112.

    Article  MATH  Google Scholar 

  • STEWART, G.W. (1973). Introduction to Matrix Computations. New York: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this paper

Cite this paper

Scott, D.T., Bryce, G.R., Allen, D.M. (1981). Orthogonalization-Triangularization Methods in Statistical Computations. In: Eddy, W.F. (eds) Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9464-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9464-8_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90633-1

  • Online ISBN: 978-1-4613-9464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics