Advertisement

Potentials of Woody Plant Transformation

  • Peter L. Schuerman
  • Abhaya M. Dandekar
Part of the Subcellular Biochemistry book series (SCBI, volume 17)

Abstract

Woody plants might well be considered to be one of the mosre intractable groups of experimental organisms in existence, yet they are some of the most valuable, both aesthetically and commercially. Manipulation of these plants can be difficult for the researcher, breeder, and grower alike, but because of the peculiarities and economic value of the woody plants, success can be particularly rewarding. This chapter deals with the use of genetic engineering to modify woody plants, describing how such modifications can serve the purposes of both researchers and commercial breeders.

Keywords

Transgenic Plant Somatic Embryo Somatic Embryogenesis Woody Plant Bacillus Thuringiensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, H., Bringhurst, R. S., Uratsu, S. L., and Dandekar, A. M., 1988, “Alpine” Fragaria vesca, a woody plant model for molecular study, Genome 30(Suppl. 1): 35.31.22.Google Scholar
  2. Akiyoshi, D. E., Klee, H., Amasino, R. M., Nester, E. W., and Gordon, M. P., 1984, T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis, Proc. Natl. Acad. Sci. USA 81:5994–5998.PubMedCrossRefGoogle Scholar
  3. Alt-Mörbe, J., Neddermann, P., von Lintig, J., Weiler, E. W., and Schröder, J., 1988, Temperature- sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria, Mol. Gen. Genet. 213:1–8.CrossRefGoogle Scholar
  4. Alt-Mörbe, J., Kühlmann, H., and Schröder, J., 1989, Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors, Mol. Plant-Microbe Inter. 2:301–308.CrossRefGoogle Scholar
  5. An, G., Watson, B., Stachel, S., Gordon, M., and Nester, E. W., 1985, New cloning vehicles for transformation of higher plants, EMBO J. 4:277–284.PubMedGoogle Scholar
  6. Angus, T. A., 1954, A bacterial toxin paralyzing silkworm larvae, Nature 173:545–546.PubMedCrossRefGoogle Scholar
  7. Aronson, A. I., Beckman, W., and Dunn, P., 1986, Bacillus thuringiensis and related insect pathogens, Microbiol. Rev. 50:1–24.Google Scholar
  8. Beck, E., Ludwig, G., Auerswald, E., Reiss, B., and Sfialler, H., 1983, Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5, Gene 19:327–336.CrossRefGoogle Scholar
  9. Bevan, M., 1984, BinaryAgrobacterium vectors for plant transformation, Nucleic Acids Res. 12:8711–8721.PubMedCrossRefGoogle Scholar
  10. Bevan, M. W., and Chilton, M-D., 1982, T-DNA of theAgrobacterium Ti- and Ri-plasmids, Annu. Rev. Genet. 16:357:384.Google Scholar
  11. Bevan, M. W., Mason, S. E., and Goelet, P., 1985, Expression of tobacco mosaic virus coat protein by a cauliflower mosaic virus promoter in plants transformed by Agrobacterium, EMBO J. 4:1921–1926.Google Scholar
  12. Bolton, G. W., Nester, E. W., and Gordon, M. P., 1986, Plant phenolic compounds induce expression of A. tumefaciens loci needed for virulence, Science 232:983–985.PubMedCrossRefGoogle Scholar
  13. Cascone, P. J., Carpenter, C. D., Li, X. H., and Simon, A. E., 1990, Recombination between satellite RNAs of turnip crinkle virus,EMBO J. 9:1709–1715.PubMedGoogle Scholar
  14. Chilton, M-D., Drummond, H. J., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., and Nester, E. W., 1977, Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis, Cell 11:263–271.PubMedCrossRefGoogle Scholar
  15. Chilton, M-D., Tepfer, D. A., Petit, A., David, C., Casse-Delbart, F., and Tempé, J., 1982, Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells, Nature 295:432–434.Google Scholar
  16. Comai, L., and Stalker, D., 1986, Mechanism of action of herbicides and their molecular manipulation, Oxford Surv. Plant Mol Cell Biol 3:166–195.Google Scholar
  17. Comai, L., Sen, L., and Stalker, D., 1983, An altered aro A gene product confers resistance to the herbicide glyphosate, Science 221:370–371.PubMedCrossRefGoogle Scholar
  18. Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. E., 1985, Expression in plants of a mutant aro A gene fromSalmonella typhimurium confers tolerance to glyphosate, Nature 317:741–744.CrossRefGoogle Scholar
  19. Couch, J. A., and Fritz, P. J., 1990, Isolation of DNA from plants high in polyphenolics, Plant Mol. Biol Rep. 8:8–12.CrossRefGoogle Scholar
  20. Crossway, A., Oakes, J. V., Irvine, J. M., Ward, B., Knauf, V. C., and Shewmaker, C. K., 1986, Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts, Mol. Gen. Genet. 202:179–185.CrossRefGoogle Scholar
  21. Cuozzo, M., O’Connell, K. M., Kaniewski, W., Fang, R-X., Chua, N-H., and Turner, N. E., 1988, Viral protection in transgenic plants expressing the cucumber mosaic virus coat protein or its antisense RNA, Bio/Technology 6:549–558.CrossRefGoogle Scholar
  22. Dandekar, A. M., Gupta, P. K., Durzan, D. J., and Knauf, V., 1987, Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii), Bio/Technology 5:587–590.CrossRefGoogle Scholar
  23. Dandekar, A. M., Martin, L. A., and McGranahan, G. H., 1988, Genetic transformation and foreign gene expression in walnut tissue, J. Am. Soc. Hort. Sci. 113:945–949.Google Scholar
  24. Dandekar, A. M., McGranahan, G. H., Leslie, C. A., and Uratsu, S. L., 1989, Agrobacterium- mediated transformation of somatic embryos as a method for the production of transgenic plants, J. Tissue Cult. Meth. 12:145–150.CrossRefGoogle Scholar
  25. Dandekar, A. M., Uratsu, S. L., and Matsuta, N., 1990, Agrobacterium-mediated transformation of apple: Factors influencing virulence, Acta Hort. 280:483–494.Google Scholar
  26. De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, P., 1984, Expression of foreign genes in regenerated plants and their progeny, EMBO J. 3:1681–1689.PubMedGoogle Scholar
  27. De Cleene, M., and De Ley, J., 1976, The host range of crown gall, Bot. Rev. 42:389–466.CrossRefGoogle Scholar
  28. De Greve, H., Leemans, J., Hernalsteens, J-P., Thia-toong, L., DeBeuckeleer, M., Willmitzer, L., Otten, L., Van Montagu, M., and Schell, J., 1982, Regeneration of normal and fertile plants that express octopine synthase, from tobacco crown galls after deletion of tumor-controlling functions, Nature 300:752–755.CrossRefGoogle Scholar
  29. De La Pena, A., Lorz, H., and Schell, J., 1987, Transgenic rye plants obtained by injecting DNA into young floral tillers, Nature 325:274–276.CrossRefGoogle Scholar
  30. Dulmage, H. T., 1981, Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control, in Microbial Control of Pests and Plant Diseases, 1970–1980 (H. D. Burges, ed.), pp. 193–222, Academic Press, London.Google Scholar
  31. Fasolo, F., Zimmerman, R. H., and Fordham, I., 1989, Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars, Plant Cell Tissue Organ Cult. 16:75–87.CrossRefGoogle Scholar
  32. Fillati, J. J., Sellmer, J., McCown, B., Haissig, B., and Comai, L., 1987, Agrobacterium mediated transformation and regeneration of Populus, Mol. Gen. Genet. 206:192–199.CrossRefGoogle Scholar
  33. Fischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., Dean, D. A., Kusano-Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. TV, 1987, Insect tolerant transgenic tomato plants, Bio/Technology 5:807–813.CrossRefGoogle Scholar
  34. Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffmann, N. L., and Woo, S. C., 1983, Expression of bacterial genes in plant cells,Proc. Natl. Acad. Sci. USA 80:4803–4807.PubMedCrossRefGoogle Scholar
  35. Fraley, R. T., Rogers, S. G., and Horsch, R. B., 1986, Genetic transformation in higher plants, CRC Rev. Plant Sci. 4:1–46.CrossRefGoogle Scholar
  36. Fromm, M., Taylor, L. P., and Walbot, V., 1985, Expression of genes transferred into monocot and dicot plant cells by electroporation, Proc. Natl. Acad. Sci. USA 82:5824–5828.PubMedCrossRefGoogle Scholar
  37. Fromm, M., Taylor, L. P., and Walbot, V., 1986, Stable transformation of maize after gene transfer by electroporation, Nature 319:791–793.PubMedCrossRefGoogle Scholar
  38. Fulton, R. W., 1986, Practices and precautions in the use of cross protection for plant virus disease control, Annu. Rev. Phytopathol. 24:67–81.CrossRefGoogle Scholar
  39. Gatehouse, A. M. R., and Boulter, D., 1983, Assessment of the antimetabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus, J. Sci. Food Agrie. 34:345–350.CrossRefGoogle Scholar
  40. Gerlach, W. L., Llewellyn, D., and Haseloff, J., 1987, Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus, Nature 328:802–805.CrossRefGoogle Scholar
  41. Goldberg, L. J., and Margalit, J., 1977, A bacterial spore demonstrating rapid larvicidal activity against Anopholes sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti, and Culex pipiens, Mosquito News 37:355–358.Google Scholar
  42. Gould, F., 1988, Evolutionary biology and genetically engineered crops, Bioscience 38:26–33.CrossRefGoogle Scholar
  43. Green, T. R., and Ryan, C. A., 1972, Wound induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects, Science 175:776–777.PubMedCrossRefGoogle Scholar
  44. Guyon, P., Chilton, M-D., Petit, A., and Tempé, J., 1980, Agropine in “null type” crown gall tumors: Evidence for the generality of the opine concept, Proc. Natl. Acad. Sci. USA 77:2693–2697.PubMedCrossRefGoogle Scholar
  45. Hain, R., Stable, P., Czernilofsky, A. P., Steinbiß, H. H., Herrera-Estrella, L., and Schell, J., 1985, Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts, Mol. Gen. Genet. 199:161–168.CrossRefGoogle Scholar
  46. Haissig, B. E., Nelson, N. D., and Kidd, G. H., 1987, Trends in the use of tissue culture in forest improvement, Bio/Technology 5:52–59.CrossRefGoogle Scholar
  47. Hamilton, R. H., and Fall, M. Z., 1971, The loss of tumor-initiating ability inAgrobacterium tumefaciens by incubation at high temperature, Experientia 27:229–230.PubMedCrossRefGoogle Scholar
  48. Harrison, B. D., Mayo, M. A., and Baulcombe, D. C., 1987, Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA, Nature 328:799–802.CrossRefGoogle Scholar
  49. Harvey, W. R., Cioffi, M., Dow, J. A. T., and Wolfersberger, M. G., 1983, Potassium ion transport ATPase in insect epithelium, J. Exp. Biol. 106:91–117.PubMedGoogle Scholar
  50. Hemenway, C., Fang, R-X., Kaniewski, W. K., Chua, N-H., and Turner, N. E., 1988, Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA,EMBO J. 7:1273–1280.PubMedGoogle Scholar
  51. Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, J-P., Van Montagu, M., and Schell, J., 1983a, Chimeric genes as dominant selectable markers in plant cells, EMBO J. 2:987–995.PubMedGoogle Scholar
  52. Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J., 1983b, Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector, Nature 303:209–213.CrossRefGoogle Scholar
  53. Herrnstadt, C., Soares, G. G., Wilcox, E. R., and Edwards, D. L., 1986, A new strain of Bacillus thuringiensis with activity against coleopteran insects, Bio/Technology 4:305–308CrossRefGoogle Scholar
  54. Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., and Boulter, D., 1987, A novel mechanism of insect resistance engineered into tobacco,Nature 330:160–163.CrossRefGoogle Scholar
  55. Hoekema, A., Hirsh, P. R., Hooykaas, P. J. J., and Schilperoort, R. A., 1983, A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid, Nature 303:179–181.CrossRefGoogle Scholar
  56. Hofmann, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S., and Van Mellaert, H., 1988, Specificity ofBacillus thuringiensis delta endotoxins is correlated with the presence of high affinity binding sites in brush border membrane of target insect midguts, Proc. Natl. Acad. Sci. USA 85:7844–7848.PubMedCrossRefGoogle Scholar
  57. Höfte, H., and Whiteley, H. R., 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev. 53:242–255.Google Scholar
  58. Hood, E. A., Jen, G., Kayes, L., Kramer, J., Fraley, R. T., and Childton, M-D., 1984, Restriction endonuclease map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants, Bio/Technology 2:702–709.CrossRefGoogle Scholar
  59. Hood, E. A., Helmer, G. L., Fraley, R. T., and Chilton, M-D., 1986, The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside T-DNA, J. Bacteriol. 168:1291–1301.PubMedGoogle Scholar
  60. Horsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, P. R., Lloyd, A., and Hoffmann, N. L., 1984, Inheritance of functional foreign genes, Science 223:496–498.PubMedCrossRefGoogle Scholar
  61. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T., 1985, A simple and general method for transferring genes into plants, Science 227:1229–1231.CrossRefGoogle Scholar
  62. James, D. J., 1987, Cell and tissue culture technology for the genetic manipulation of temperate fruit trees, in Biotechnology and Genetic Engineering Reviews, Vol. 5 (G. E. Russell, ed.), pp. 33–79, Intercept Ltd., Newcastle-upon-Tyne.Google Scholar
  63. James, D. J., Passey, A. J., and Deeming, D. C., 1984, Adventitious embryogenesis and the in vitro culture of apple seed parts, J. Plant Physiol. 115:217–229.Google Scholar
  64. James, D. J., Passey, A. J., and Rugini, E., 1988, Factors affecting high frequency plant regeneration from apple leaf tissues cultured in vitro, J. Plant Physiol. 132:148–154.Google Scholar
  65. James, D. J., Passey, A. J., Barbara, D. J., and Bevan, M. W., 1989, Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector, Plant Cell Rep. 7:658–661.Google Scholar
  66. James, D. J., Passey, A. J., and Barbara, D. J., 1990a, Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria x anannassa Duch.) using disarmed binary vectors, Plant Sci. 69:79–94.CrossRefGoogle Scholar
  67. James, D. J., Passey,A. J., and Barbara, D. J., 1990b, Regeneration and transformation of apple and strawberry using disarmed Ti-binary vectors, in Genetic Engineering of Crop Plants. 49th Nottingham Easter School (G. Lycett and D. Grierson, eds.), pp. 239–248, Sutton Bonington, University of Nottingham, Butterworths, UK.Google Scholar
  68. Jefferson, R. A., 1987, Assaying chimeric genes in plants: The GUS gene fusion system, PlantMol. Biol. Rep. 5:387–405.CrossRefGoogle Scholar
  69. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W., 1987, GUS fusion: β-Glucuronidase as a sensitive and versatile gene marker in higher plants, EMBO J. 6:3901–3907.PubMedGoogle Scholar
  70. Jin, S., Komari, T., Gordon, M. P., and Nester, E. W., 1987, Genes responsible for the super- virulence phenotype of Agrobacterium tumefaciens A281, J. Bacteriol. 169:4417–4425.PubMedGoogle Scholar
  71. Jin, S., Roitsch, T., Ankenbauer, R. G., Gordon, M. P., and Nester, E. W., 1990a, The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation, J. Bacteriol. 172:525–530.PubMedGoogle Scholar
  72. Jin, S., Roitsch, T., Christie, P. J., and Nester, E. W., 1990b, The regulatory VirG protein specifically binds to a cw-acting regulatory sequence involved in transcriptional activation ofAgrobacterium tumefaciens virulence genes, J. Bacteriol. 172:531–537.PubMedGoogle Scholar
  73. Jones, O. P., 1976, Effect of phloridzin and phloroglucinol on apple shoots, Nature 262:392–393.CrossRefGoogle Scholar
  74. Kerr, A., 1969, Crown gall of stone fruit. I. Isolation of Agrobacterium isolates, Aust. J. Biol. Sci. 22:111–116.Google Scholar
  75. Klee, J. H., Yanofsky, M. F., and Nester, E. W., 1985, Vectors for transformation of higher plants, Bio/Technology 3:637–642.CrossRefGoogle Scholar
  76. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature 327:70–73.CrossRefGoogle Scholar
  77. Knowles, B. H., and Ellar, D. J., 1987, Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thruingiensis 8-endotoxins with different insect specificities, Biochim. Biophys. Acta 924:509–518.CrossRefGoogle Scholar
  78. Krieg, V. A., Huger, A. M., Langenbruch, G. A., and Schnetter, W. Z., 1983, Bacillus thuringiensis var. tenebrionis: A new pathotype effective against larvae of Coleoptera, Z. Angew. Entomol. 96:500–508.CrossRefGoogle Scholar
  79. Kuhlemeier, C., Green, P. J., and Chua, N-H., 1987, Regulation of gene expression in higher plants, Annu. Rev. Plant Physiol. 38:221–257.CrossRefGoogle Scholar
  80. Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., and Turner, N., 1990, Engineering resistance to mixed virus infection in a commercial potato cultivar: Resistance to potato virus X and potato virus Y in transgenic Russet Burbank, Bio/Technology 8:127–134.PubMedCrossRefGoogle Scholar
  81. Lilley, M., Ruffell, R. N., and Sommerville, H., 1980, Purification of the insecticidal toxin in crystals of Bacillus thuringiensis, J. Gen. Microbiol. 118:1–11.PubMedGoogle Scholar
  82. Luo, Z-X., and Wu, R., 1988, A simple method for the transformation of rice via the pollen-tube pathway, Plant Mol. Biol. Rep. 6:165–174.CrossRefGoogle Scholar
  83. Mante, S., Cornell, U., Morgens, P., Scorza, R., Cordts, J., and Callahan, A., 1990, Agrobacterium -mediated transformation of plum (Prunus domestica) hypocotyl segments and regeneration of transgenic plants, In Vitro 26:44A.Google Scholar
  84. Martin, L., 1987, Genetic transformation and foreign gene expression in tissue of different woody species, M.S. thesis. University of California, Davis.Google Scholar
  85. McCabe, D. E., Swain, W. F., Martinell, B. J., and Christou, P., 1988, Stable transformation of soybean by particle acceleration, Bio/Technology 6:923–926.CrossRefGoogle Scholar
  86. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., and Fraley, R., 1986, Leaf disc transformation of cultivated tomato (L. esculentum) usingAgrobacterium tumefaciens, Plant Cell Rep. 5:81–84.CrossRefGoogle Scholar
  87. McGaughey, W. H., 1985, Insect resistance to the biological insecticide Bacillus thuringiensis, Science 229:193–195.Google Scholar
  88. McGaughey, W. H., and Johnson, D. E., 1987, Toxicity of different serotypes and toxins of Bacillus thuringiensis to resistant and susceptible Indianmeal moths (Lepidoptera: Pyralidae), J. Econ. Entomol. 80:1122–1126.Google Scholar
  89. McGranahan, G. H., Leslie, C. A., Uratsu, S. L., Martin, L. A., and Dandekar, A. M., 1988, Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants, Bio/Technology 6:800–804.CrossRefGoogle Scholar
  90. McGranahan, G. H., Leslie, C. A., Uratsu, S. L., and Dandekar, A. M., 1990, Improved efficiency of the walnut somatic embryo gene transfer system, Plant Cell Rep. 8:512–516.CrossRefGoogle Scholar
  91. Naina, N. S., Gupta, P. K., and Mascarenhas, J. P., 1989, Genetic transformation and regeneration of transgenic neem (Azadirachta indica) plants using Agrobacterium tumefaciens, Curr. Sci. 58:184–187.Google Scholar
  92. Nehra, N. S., Chibbar, R. N., Kartha, K. K., Datla, R. S. S., Crosby, W. L., and Stushnoff, C., 1990, Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants, Plant Cell Rep. 9:10–13.Google Scholar
  93. Nelson, R. S., McCormic, S. M., Delanney, X., Dube, P., Layton, J., Anderson, E. J., Kaniewska, M., Proksch, R. K., Horsch, R. B., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1988, Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus, Bio/Technology 6:403–409.CrossRefGoogle Scholar
  94. Ochatt, S. J., and Caso, O. H., 1986, Shoot regeneration from leaf mesophyll protoplasts of wild pear (Pyrus communis var, pyraster L.), J. Plant PhysioL 122:243–249.Google Scholar
  95. Ochatt, S. J., and Power, J. B., 1988, An alternative approach to plant regeneration from protoplasts of sour cherry (Prunus cerasus L.), Plant Sci. 56:75–79.CrossRefGoogle Scholar
  96. Ochatt, S. J., Cocking, E. C., and Power, J. B., 1987, Isolation, culture and plant regeneration of Colt cherry Prunus avium x pseudocerasus protoplasts, Plant Sci. 50:139–143.CrossRefGoogle Scholar
  97. Oka, S., and Ohyama, K., 1985, Plant regeneration from leaf mesophyll protoplasts of Broussonetia kazinoki Sieb. (paper mulberry), J. Plant Physiol. 119:455–460.Google Scholar
  98. Otten, L. A. M. B., and Schilperoort, R. A., 1978, A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities, Biochem. Biophys. Acta 527:497–500.PubMedGoogle Scholar
  99. Owens, L. D., and Cress, D. E., 1985, Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids, Plant Physiol. 77:87–94.PubMedCrossRefGoogle Scholar
  100. Padgette, S. R., Della-Cioppa, G., Shah, D. M., Fraley, R. T., and Kishore, G. M., 1989, Selective herbicide tolerance through protein engineering, in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6 (I. K. Vasil, ed.), pp. 441–476, Academic Press, Inc., San Diego.Google Scholar
  101. Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I., 1984, Direct gene transfer to plants, EMBO J. 3:2717–2722.PubMedGoogle Scholar
  102. Patat-Ochatt, E. M., Ochatt, S. J., and Power, J. B., 1988, Plant regeneration from protoplasts of apple rootstocks and scion varieties (Malus x domestica Borkh.), J. Plant Physiol. 133:460–465.Google Scholar
  103. Petit, A., David, C., Dahl, G. A., Ellis, J. G., Guyon, P., Casse-Delbart, F., and Tempe, J., 1983, Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation, Mol. Gen. Genet. 190:204–214.CrossRefGoogle Scholar
  104. Pimentel, D., Hunter, M. S., LaGro, J. A., Efroymson, R. A., Landers, J. C., Mervis, F. T., McCarthy, C. A., and Boyd, A. E., 1989, Benefits and risks of genetic engineering in agriculture, Bioscience 39:606–614.CrossRefGoogle Scholar
  105. Polito, V. S., McGranahan, G. H., Pinney, K., and Leslie, C., 1989, Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications for Agrobac- terium-mediated transformation, Plant Cell Rep. 8:219–221.CrossRefGoogle Scholar
  106. Powell, A. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science 232:738–743.CrossRefGoogle Scholar
  107. Pythoud, F., Sinkar, V. P., Nester, E. W., and Gordon, M. P., 1987, Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiB0542: Application to genetic engineering of poplar, Bio/Technology 5:1323–1327.CrossRefGoogle Scholar
  108. Raffa, K. F., 1989, Genetic engineering of trees to enhance resistance to insects—Evaluating the risks of biotype evolution and secondary pest outbreak, Bioscience 39:524–534.CrossRefGoogle Scholar
  109. Revilla, M. A., Ochatt, S. J., Doughty, S., and Power, J. B., 1987, A general strategy for the isolation of mesophyll protoplasts from deciduous fruit and nut tree species, Plant Sci. 50:133–137.CrossRefGoogle Scholar
  110. Russel, J. A., and McCown, B. H., 1986, Culture and regeneration of Populus leaf protoplasts isolated from non-seedling tissue, Plant Sci. 46:133–142.CrossRefGoogle Scholar
  111. Russel, J. A., and McCown, B. H., 1988, Recovery of plants from leaf protoplasts of hybrid-poplar and aspen clones, Plant Cell Rep. 7:59–62.CrossRefGoogle Scholar
  112. Ryan, C. A., Bishop, P. D., Graham, J. S., Broadway, R. M., and Duffey, S. S., 1986, Plant and fungal cell wall fragments activate expression of proteinase inhibitor genes for plant defense, J. Chem. Ecol. 12:1025–1035.CrossRefGoogle Scholar
  113. Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, I., 1986, Co-transformation of unlinked foreign genes into plants by direct gene transfer, Bio/Technology 4:1093–1096.CrossRefGoogle Scholar
  114. Schröder, G., Waffenschmidt, S., Weiler, E. W., and Schröder, J., 1983, The T-region of Ti- plasmids codes for an enzyme synthesizing indole-3-acetic acid, EMBO J. 2:403–409.PubMedGoogle Scholar
  115. Shaw, C. H., Watson, M. D., Carter, G. H., and Shaw, C. H., 1984, The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumour formation, Nucleic Acids. Res. 12:6031–6041.PubMedCrossRefGoogle Scholar
  116. Simon, A. E., H. Engel, H., Johnson, R. P., and Howell, S. H., 1988, Identification of regions affecting virulence, RNA processing and infectivity in the virulent satellite of turnip crinkle virus, EMBO J. 7:2645–2651.PubMedGoogle Scholar
  117. Stachel, S., and Zambryski, P., 1986, virA and virG control the plant-induced activation of the T- DNA transfer process of A. tumefaciens, Cell 46:325–333.PubMedCrossRefGoogle Scholar
  118. Stachel, S. E., Messens, E., Van Montagu, M., and Zambryski, P., 1985, Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens, Nature 318:624–629.Google Scholar
  119. Stone, T. B., Sims, S. R., and Marrone, P. G., 1989, Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the delta-endotoxin of Bacillus thuringiensis subsp. kurstaki, J. Invertebr. Pathol. 53:228–234.CrossRefGoogle Scholar
  120. Thomashow, M. F., Hugly, S., Buchholz, W. G., and Thomashow, L. S., 1986, Molecular basis for the auxin independent phenotype of crown gall tumor tissue, Science 231:616–618.PubMedCrossRefGoogle Scholar
  121. Tulecke, W., 1987, Somatic embryogenesis in woody perennials, in Cell and Tissue culture in Forestry, Vol. 2, (J. M. Bonga and D. J. Durzan, eds.), pp. 61–91. Martinus Nijhoff, Boston.CrossRefGoogle Scholar
  122. Tulecke, W., and McGranahan, G. H., 1985, Somatic embryogenesis and plant regeneration from cotyledon tissue of walnut,Juglans regia L., Plant Sci. 40:53–67.CrossRefGoogle Scholar
  123. Tumer, N. E., O’Connell, K. M., Nelson, R. S., Sanders, P. R., Beachy, R. N., Fraley, R. T., and Shah, D. M., 1987, Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants, EMBO J. 6:1181–1189.PubMedGoogle Scholar
  124. Ulian, E. C., Smith, R. H., Gould, J. H., and McKnight, T. D., 1988, Transformation of plants via the shoot apex, In Vitro Cellul. Dev. Biol. 24:951–954.CrossRefGoogle Scholar
  125. Uratsu, S. L., Ahmadi, H., Bringhurst, R. S., and Dandekar, A. M., 1991, Relative virulence of Agrobacterium strains on strawberry (Fragaria vesca), Hort. Sci. 26:196–199.Google Scholar
  126. Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., DeBeuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J., 1987, Transgenic plants protected from insect attack,Nature 328:33–37.CrossRefGoogle Scholar
  127. Van Dun, C. M. P., Bol, J. F., and van Vloten-Doting, L., 1987, Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants, Virology 159:299–305.PubMedCrossRefGoogle Scholar
  128. Van Larebeke, N., Genetello, C., Schell, J., Schilperoort, R. A., Hermans, A. K., Hernalsteens, J. P., and Van Montagu, M., 1975, Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer, Nature 255:742–743.PubMedCrossRefGoogle Scholar
  129. Van Rie, J., McGaughey, W. H., Johnson, D. E., Barnett, B. D., and Van Mellaert, H., 1990, Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis, Science 247:12–14. Google Scholar
  130. Vardi, A., Spiegel-Roy, P., and Galun, E., 1982, Plant regeneration from Citrus protoplasts, variability in methodological requirements among cultivars and species,Theor. Appl. Genet. 62:171–176.CrossRefGoogle Scholar
  131. Veluthambi, K., Krishnan, M., Gould, J. H., Smith, R. H., and Gelvin, S. B., 1989, Opines stimulate induction of the vir genes of the Agrobacterium tumefaciens Ti plasmid, J. Bacteriol. 171:3969–3703.Google Scholar
  132. Vernade, D., Herrera-Estrella, A., Wang, K., and Van Montagu, M., 1988, Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH, J. Bacteriol. 170:5822–5829.PubMedGoogle Scholar
  133. Wallin, A., and Johansson, L., 1989, Plant regeneration from leaf mesophyll protoplasts of in vitro cultured shoots of a columnar apple,J. Plant Physiol. 135:565–570.Google Scholar
  134. Wang, K., Herrera-Estrella, L., Van Montagu, M., and Zambryski, P., 1984, Right 25 bp terminussequence of the nopaline T-DNA is essential for and determines the direction of DNA transfer from Agrobacterium to the plant genome, Cell 38:455–462.PubMedCrossRefGoogle Scholar
  135. Wang, K., Stachel, S. E., Timmerman, B., Van Montagu, M., and Zambryski, P. C., 1987, Site- specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression, Science 235:587–591.PubMedCrossRefGoogle Scholar
  136. Wann, S. R., 1988, Somatic embryogenesis in woody species, in Horticultural Reviews, Vol. 10 (J. Janick, ed.), pp. 153–181, Timber Press, Portland, OR.Google Scholar
  137. Watson, B., Currier, T. C., Gordon, M. P., Chilton, M-D., and Nester, E. W., 1975, Plasmid required for virulence ofAgrobacterium tumefaciens, J. Bacteriol. 123:255–264.PubMedGoogle Scholar
  138. Weintraub, H. M., 1990, Antisense RNA and DNA,Sci. Am. 262:40–46.PubMedCrossRefGoogle Scholar
  139. Whiteley, H. R., and Schnepf, H. E., 1986, The molecular biology of parasporal crystal body formation in Bacillus thuringiensis, Annu. Rev. Microbiol. 40:549–576.PubMedCrossRefGoogle Scholar
  140. Winans, S., Ebert, P., Stachel, S., Gordon, M., and Nester, E. W., 1986, A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci, Proc. Natl. Acad. Sci. USA 83:8278–8282.PubMedCrossRefGoogle Scholar
  141. Yadav, N. S., Vanderleyden, J., Bennett, D. R., Barnes, W. M., and Chilton, M. D., 1982, Short direct repeats flank the T-DNA on a nopaline Ti-plasmid, Proc. Natl. Acad. Sci. USA 79:6322–6326.PubMedCrossRefGoogle Scholar
  142. Yamamoto, T., and McLaughlin, R. E., 1981, Isolation of a protein from the parasporal crystal of Bacillus thuringiensis varkurstaki toxic to mosquito larvae, Aedes taeniorhynchus, Biochem. Biophys. Res. Commun. 103:414–421.CrossRefGoogle Scholar
  143. Yanofsky, M. F., Porter, S. G., Young, C., Albright, L. M., Gordon, M. P., and Nester, E. W., 1986, The virD operon of Agrobacterium tumefaciens encodes a site-specific nuclease, Cell 41:471–477.CrossRefGoogle Scholar
  144. Zaenen, I., Van Larebeke, N., Teuchy, H., Van Montagu, M., and Schell, J., 1974, Supercoiled circular DNA in crown gall inducing Agrobacterium strains, J. Mol. Biol. 86:109–127.PubMedCrossRefGoogle Scholar
  145. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J., 1983, Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity, EMBO J. 2:2143–2150.PubMedGoogle Scholar
  146. Zimmerman, R. H., 1983, Tissue Culture, in Methods in Fruit Breeding (J. N. Moore and J. Janick, eds.), pp. 124–135, Purdue University Press, West Lafayette, INGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Peter L. Schuerman
    • 1
  • Abhaya M. Dandekar
    • 1
  1. 1.Davis Crown Gall Group, Department of PomologyUniversity of CaliforniaDavisUSA

Personalised recommendations