Genetic Manipulation of Photosynthetic Processes in Plants

  • Tristan A. Dyer
Part of the Subcellular Biochemistry book series (SCBI, volume 17)


As photosynthesis is the primary path by which high-energy organic molecules enter the biosphere, it would seem to be self-evident that we should try to optimize this process in our efforts to fulfill our requirements of such substances. However, this may not necessarily just involve an effort to increase the maximum rate at which this process occurs in ideal conditions. Also, it may be related to improving photosynthetic efficiency in suboptimal conditions of light, temperature, or water supply so that crop plants with particularly favorable characteristics can be grown in hotter or colder, wetter or drier conditions, or at different latitudes. Perhaps it may also be desirable to extend the period during which a photosynthetic organ remains viable or, alternatively, remobilizes its components quickly so that, once it is past its peak efficiency, its reservoir of valuable nitrogenous compounds is reused to greater advantage elsewhere. These issues could be particularly relevant in the situation in which we now find ourselves, in which there could be rapid climatic change (White, 1990).


Transgenic Plant Genetic Manipulation Chloroplast Genome Plant Cell Environ Leaf Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, T. J., and Lorimer, G. H., 1987, Rubisco: Structure, mechanisms and prospects for improvement, in The Biochemistry of Plants, Vol. 10 (M. D. Hatch, ed.), pp. 131–218, Academic Press, Orlando, FL.Google Scholar
  2. Austin, R. B., 1989, Genetic variation in photosynthesis, J. Agr. Sci. Camb. 112:287–294.CrossRefGoogle Scholar
  3. Blowers, A. D., Bogorad, L., Shark, K. B., and Sanford, J. C., 1989, Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome, Plant Cell 1:123–132.PubMedCrossRefGoogle Scholar
  4. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolf- Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B., and Sanford, J. C., 1988, Chloroplast transformation in Chlamydomonas with high velocity microprojectiles, Science 240:1534–1538.PubMedCrossRefGoogle Scholar
  5. Brinkman, M. A., and Frey, K. J., 1978, Flag leaf physiological analysis of oat isolines that differ in grain yield from their recurrent parents, Crop Sci. 18:69–73.CrossRefGoogle Scholar
  6. Brinkmann, H., Cerff, R., Salomon, M., and Soll, J., 1989, Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach,Plant Mol. Biol. 13:81–94.PubMedCrossRefGoogle Scholar
  7. Charles-Edwards, D. A., 1978, An analysis of the photosynthesis and productivity of vegetable crops in the United Kingdom, Ann. Bot. 42:717–731.Google Scholar
  8. Chen, Z., and Spreitzer, R. J., 1989, Chloroplast intragenic suppression enhances the low CO2/O2 specificity of mutant ribulose bisphosphate carboxylase/oxygenase, J. Biol. Chem. 264:3051–3053.PubMedGoogle Scholar
  9. Collatz, G. J., Berry, J. A., Farquhar, G. D., and Pierce, J., 1990, The relationship between the Rubisco reaction mechanism and models of photosynthesis, Plant Cell Environ. 13:219–225.CrossRefGoogle Scholar
  10. Cornelissen, M. J., De Block, M., Van Montagu, M., Iieemans, J., Schreier, P. H., and Schell, J., 1987, Plastid transformation. A progress report, in Plant DNA Infectious Agents (J. Hohn and J. Schell, eds.), pp. 311–321, Springer-Verlag, Vienna.CrossRefGoogle Scholar
  11. Cotten, M., 1990, The in vivo application of ribozymes, TIBTECH 8:174–178.Google Scholar
  12. De Block, M., Schell, J., and Van Montagu, M., 1985, Chloroplast transformation by Agrobacterium tumefaciens, EMBO J. 6:1367–1372.Google Scholar
  13. De la Torre, W. R., and Burkey, K. O., 1990, Acclimation of barley to changes in light intensity: Photosynthetic electron transport activity and components, Photosyn. Res. 24:127–136.Google Scholar
  14. Debus, R. J., Barry, B. A., Sithole, I., Babcock, G. T., and Mcintosh, L., 1988, Directed mutagenesis indicates that the donor to P+ 680 in photosystem II is tyrosine-161 of the D1 polypeptide, Biochemistry 27:9071–9074.PubMedCrossRefGoogle Scholar
  15. Erickson, J. M., Rahire, M., and Malnöe, P., Girard-Bascou, J., Pierre, Y., Bennoun, P., and Rochaix, J-D., 1986, Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression,EMBO J. 5:1745–1754.PubMedGoogle Scholar
  16. Evans, J. R., 1987, The relationship between electron transport components and photosynthetic capacity in pea leaves grown at different irradiances, Aust. J. Plant Physiol. 14:157–170.CrossRefGoogle Scholar
  17. Evans, L. T., 1975, Crop Physiology, Cambridge University Press, New York.Google Scholar
  18. Farazdaghi, H., and Edwards, G. E., 1988a, A mechanistic model for photosynthesis based on the multisubstrate ordered reaction of ribulose-l,5-bisphosphate carboxylase, Plant Cell Environ. 11:789–798.CrossRefGoogle Scholar
  19. Farazdaghi, H., and Edwards, G. E., 1988b, A model for photosynthesis and photorespiration in C3 plants based on the biochemistry and stoichiometry of the pathways, Plant Cell Environ. 11:799–809.CrossRefGoogle Scholar
  20. Farquhar, G. D., von Caemmerer, S., and Berry, J. A., 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta 149:78–90.CrossRefGoogle Scholar
  21. Fliigge, U. I., Fischer, K., Gross, A., Sebald, N., Lottspeich, F., and Eckerskorn, C., 1989, The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts, EMBO J. 8:39–46.Google Scholar
  22. Gatenby, A. A., Lubben, T. H., Ahlquist, P., and Keegstra, K., 1988, Imported large subunits of ribulose bisphosphate carboxylase/oxygenase but not imported p-ATP synthase subunits are assembled into holoenzyme in isolated chloroplasts, EMBO J. 7:1307–1314.PubMedGoogle Scholar
  23. Giersch, G., Lammel, D., and Farquhar, G., 1990, Control analysis of photosynthetic C02 fixation, Photosyn. Res. 24:151–165.Google Scholar
  24. Gilford, R. M., and Evans, L. T., 1981, Photosynthesis, carbon partitioning and yield,Annu. Rev. Plant Physiol. 32:485–509.CrossRefGoogle Scholar
  25. Gutschick, V. P., 1984, Photosynthetic model of C3 leaves incorporating CO2 transport, propagation of radiation and biochemistry. I Kinetics and their parameterization, Photosyntheiica 18:549–568.Google Scholar
  26. Gutteridge, S., 1990, Limitations of the primary events of C02 fixation in photosynthetic organisms: the structure and mechanism of Rubisco, Biochim. Biophys. Acta 1015:1–14.CrossRefGoogle Scholar
  27. Hallick, R. B., 1989, Proposals for the naming of chloroplast genes. II. Update of the nomenclature of genes for thylakoid membrane polypeptides, Plant Mol. Biol. Rep. 7:266–275.CrossRefGoogle Scholar
  28. Hardman, L. L., and Brun, W. A., 1971, Effect of atmospheric carbon dioxide enrichment at different developmental stages on growth and yield components of soybeans, Crop Sci. 11:886–888.CrossRefGoogle Scholar
  29. Haring, M. A., and De Block, M., 1990, New roads towards chloroplast transformation in higher plants, Physiol. Plant 79:218–220.CrossRefGoogle Scholar
  30. Harley, D. C., Weber, J. A., and Gates, D. M., 1985, Interactive effects of light, leaf temperature, Co2 and O2 on photosynthesis in soy bean, Planta 165:249–263.CrossRefGoogle Scholar
  31. Heber, U., Neimanis, S., and Dietz, K-J., 1988, Fractional control of photosynthesis by the QB protein, the cytochrome f/b6 complex and other components of the photosynthetic apparatus, Planta 173:267–274.CrossRefGoogle Scholar
  32. Hobbs, S. L. A., and Mahon, J. D., 1985, Inheritance of chlorophyll content, ribulose-1,5-bisphosphate carboxylase activity, and stomatal resistance in peas, Crop Sci. 25:1031–1034.CrossRefGoogle Scholar
  33. Kacser, H., and Burns, J. A., 1973, The control of flux, Sym. Soc. Exp. Biol. 27:67–104.Google Scholar
  34. Kacser, H., and Porteous, J. W., 1987, Control of metabolism: What do we have to measure? TIBS 12:5–14.Google Scholar
  35. Keys, A. J., 1986, Rubisco: Its role in photorespiration, in Proceedings of a Conference on Ribulose Bisphosphate Carboxylase-Oxygenase (R. J. Ellis and J. C. Gray, eds.), pp. 325–336, Philos. Trans. R. Soc. Lond. B, London.Google Scholar
  36. Kimball, B. A., 1983, Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations, Agron. J. 75:779–788.CrossRefGoogle Scholar
  37. Kirschbaum, M. U. F., and Farquhar, G. D., 1984, Temperture dependence of whole-leaf photosynthesis in Eucalyptus paciflora Sieb ex Spreng,Aust. J. Plant Physiol. 11:519–538.CrossRefGoogle Scholar
  38. Kramer, P. J., 1981, Carbon dioxide concentration, photosynthesis, and dry matter production, Bioscience 31:29–33.CrossRefGoogle Scholar
  39. Kruckeberg, A. L., Neuhaus, H. E., Feil, R., Gottlieb, L. D., and Stitt, M., 1989, Decreased- activity mutants of phosphoglucoisomerase in the cytosol and chloroplast of Clarkia xantiana, Biochem. J. 261:457–467.PubMedGoogle Scholar
  40. Laisk, A., and Walker, D. A., 1989, A mathematical model of electron transport. Thermodynamic necessity for photosystem II regulation: “Light stomata,” Proc. R. Soc. Lond. B 237:417–444.CrossRefGoogle Scholar
  41. Laisk, A., Eichelmann, H., Oja, V., Eatherall, A., and Walker, D. A., 1989, A mathematical model of the carbon metabolism in photosynthesis. Difficulties in explaining oscillations by fructose 2,6-bisphosphate regulation, Proc. Roy. Soc. Lond. B 237:389–415.CrossRefGoogle Scholar
  42. Lamattina, L., Anchoverri, V., Conde, R. D., and Lezica, R. P., 1987, Quantification of the kinetic effects on protein synthesis and degradation in senescing wheat leaves, Plant Physiol. 83:497–499.PubMedCrossRefGoogle Scholar
  43. Longstaff, M., Raines, C. A., McMorrow, E. M., Bradbeer, J. W., and Dyer, T. A., 1989, Wheat phosphoglycerate kinase: Evidence for recombination between the genes for the chloroplastic and cytosolic enzymes, Nucleic Acids Res. 17:6569–6580.PubMedCrossRefGoogle Scholar
  44. Loomis, R. S., Williams, W. A., and Hall,A. E., 1971, Agricultural productivity, Annu. Rev. Plant Physiol. 22:431–468.CrossRefGoogle Scholar
  45. Martin, W., and Cerff, R., 1986, Prokaryotic features of a nuclear-encoded enzyme, cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapsis alba), Eur. J. Biochem. 159:323–331.PubMedCrossRefGoogle Scholar
  46. Michel, H., Epp, O., and Deisenhofer, J., 1986, Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis, EMBO J. 5:2445–2451.PubMedGoogle Scholar
  47. Milanez, S., and Mural, R. J., 1988, Cloning and sequencing of cDNA encoding the mature form of phosphoribulokinase from spinach, Gene 66:55–63.PubMedCrossRefGoogle Scholar
  48. Moore, P. D., 1982, Evolution of photosynthetic pathways in flowering plants, Nature 295:647–648.CrossRefGoogle Scholar
  49. Morris, R. O., 1986, Genes specifying auxin and cytokinin biosynthesis in phytopathogens, Annu. Rev. Plant Physiol. 37:509–538.CrossRefGoogle Scholar
  50. Nagley, P., and Devenish, R. J., 1989, Leading organellar proteins along new pathways: The relocation of mitochondrial and chloroplast genes to the nucleus, TIBS 14:31–35.Google Scholar
  51. Nasyrov, Y. S., 1978, Genetic control of photosynthesis and improving crop productivity, Plant Physiol. 29:215–237.CrossRefGoogle Scholar
  52. Nelson, C. J., 1988, Genetic associations between photosynthetic characteristics and yield: Review of the evidence,Plant Physiol. Biochem. 26:543–554.Google Scholar
  53. Neuhaus, H. E., Kruckeberg, A. L., Feil, R., and Stitt, M., 1989, Reduced-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast ofClarkia xantiana. II. Study of the mechanisms which regulate photosynthate partitioning, Planta 178:110–122.CrossRefGoogle Scholar
  54. Newsholme, E. A., and Start, C., 1973, Regulation in Metabolism, Wiley, New York.Google Scholar
  55. Ohyama, K., Kochi, T., Sano, T., and Yamada, Y., 1988, Newly identified groups of genes in chloroplasts, TIBS 13:19–22.PubMedGoogle Scholar
  56. Ozbun, J. L., 1978, Photosynthetic efficiency and crop production, Hort. Sci. 13:678–679.Google Scholar
  57. Parry, M. A. J., Schmidt, C. N. G., Cornelius, M. J., Millard, B. N., Burton, S., Gutteridge, S., Dyer, T. A., and Keys, A. J., 1987, Variations in properties of ribulose-1,5-bisphosphate carboxylase from various species related to differences in amino acid sequences,J. Exp. Bot. 38:1260–1271.CrossRefGoogle Scholar
  58. Pettersson, G., and Ryde-Pettersson, U., 1988, A mathematical model of the Calvin photosynthesis cycle, Eur. J. Biochem. 175:661–672.PubMedCrossRefGoogle Scholar
  59. Pettersson, G., and Ryde-Pettersson, U., 1989, Dependence of the Calvin cycle on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates, Eur. J. Biochem. 186:683–687.PubMedCrossRefGoogle Scholar
  60. Pierce, J., 1988, Prospects for manipulating the substrate specificity of ribulose bisphosphate carboxylase/oxygenase, Physiol. Plant. 72:690–698.CrossRefGoogle Scholar
  61. Potrykus, I., 1990, Gene transfer to cereals: An assessment, BioTechnology 8:535–542.CrossRefGoogle Scholar
  62. Prioul, J. L., and Reyss, A., 1987, Acclimation of ribulose bisphosphate carboxylase and mRNAs to changing irradiance in adult tobacco leaves. Differential expression in LSU and SSU mRNA, Plant Physiol. 84:1238–1243.PubMedCrossRefGoogle Scholar
  63. Radosevich, S. R., Sims, J., and Holt, J. S., 1982, Physiological responses and fitness of susceptible and resistant weed biotypes to triazine herbicides, in Herbicide Resistance in Plants (H. M. le Baron and J. Gressel, eds.), pp. 163–183, Wiley, New York.Google Scholar
  64. Raines, C. A., Lloyd, J. C., Longstaff, M., Bradley, D., and Dyer, T. A., 1988, Chloroplast fructose-1,6-bisphosphatase: The product of a mozaic gene, Nucleic Acids Res. 16:7931–7942.PubMedCrossRefGoogle Scholar
  65. Raines, C. A., Longstaff, M., Lloyd, J. C., and Dyer, T. A., 1989, Complete coding sequence of wheat phosphoribulokinase: Developmental and light-dependent expression of the mRNA, Mol. Gen. Gent. 220:43–48.Google Scholar
  66. Raines, C. A., Lloyd, J. C., and Dyer, T. A., 1990, Molecular biology of the C3 photosynthetic carbon reduction cycle, Photosyn. Res. 27:1–14.CrossRefGoogle Scholar
  67. Rodermel, S. R., Abbott, M. S., and Bogorad, L., 1988, Nuclear-organelle interactions: Nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants, Cell 55:673–681.PubMedCrossRefGoogle Scholar
  68. Roesler, K. R., and Ogren, W. L., 1988, Nucleotide sequence of spinach cDNA encoding phosphoribulokinase, Nucleic Acids Res. 16:7192.PubMedCrossRefGoogle Scholar
  69. Roesler, K. R., and Ogren, W. L., 1990, Chlamydomonas reinhardtii phosphoribulokinase, Plant Physiol. 93:188–193.PubMedCrossRefGoogle Scholar
  70. Rolleston, F. S., 1972, A theoretical background to the use of measured intermediates in the study of the control of intermediary metabolism, Curr. Top. Cell Reg. 5:47–75.Google Scholar
  71. Sage, R. F., Sharkey, T. D., and Seemann, J. R., 1989, Acclimation of photosynthesis to elevated CO2 in five C3 species, Plant Physiol. 89:590–596.PubMedCrossRefGoogle Scholar
  72. Satterlee, L. D., and Koller, H. R., 1984, Response of soybean fruit respiration to changes in whole plant light and CO2 environment, Crop Sci. 24:1007–1010.CrossRefGoogle Scholar
  73. Secor, J., McCarty, D. R., Shibles, R., and Green, D. E., 1982, Variability and selection for leaf photosynthesis in advanced generations of soybeans, Crop Sci. 22:255–259.CrossRefGoogle Scholar
  74. Shih, M-C., Lazar, G., and Goodman, H. M., 1986, Evidence in favour of the symbiotic origin of chloroplasts: Primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases, Cell 47:73–80.PubMedCrossRefGoogle Scholar
  75. Sinclair, T. R., and de Wit, C. T., 1976, Analysis of the carbon and nitrogen limitations of soybean yield, Agron. J. 68:319–324.CrossRefGoogle Scholar
  76. Stitt, M., 1989, Control of sucrose synthesis: estimation of free energy changes, investigation of the contribution of equilibrium and non-equilibrium reactions and estimation of elasticities and flux control coefficients, in Techniques and New Developments in Photosynthesis Research (J. Barber and R. Malkin, eds.), pp. 365–391, Plenum Press, New York.Google Scholar
  77. Takeda, K., and Frey, K. J., 1976, Contributions of vegetative growth rate and harvest index to grain yield of progenies from Avena sativa × A. sterilis crosses, Crop Sci. 16:817–821.CrossRefGoogle Scholar
  78. Takenaka, A., 1989, Optimal leaf photosynthetic capacity in terms of utilising a natural light environment, J. Theor. Biol. 139:517–529.CrossRefGoogle Scholar
  79. Van Grinsven, M. Q. J. M., Haring, M. A., De Haas, J. M., Nijkamp, H. J. J., and Kool, A. J., 1986, Identification, cloning and transfer of chloroplast genes of Petunia hybrida, in Genetic Manipulation in Plant Breeding (W. Horn, C. J. Jensen, W. Odenbach, and W. Schieder, eds.), pp. 859–866, Eucarpia, de Gruyter, Berlin.Google Scholar
  80. Vermaas, W. F. J., Rutherford, A. W., and Hansson, Ö, 1988, Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein, Proc. Natl. Acad. Sci. USA 85:8477–8481.CrossRefGoogle Scholar
  81. Vestweber, D., and Schatz, G., 1989, DNA-protein conjugates can enter mitochondria via the protein import pathway, Nature 338:170–172.PubMedCrossRefGoogle Scholar
  82. Weber, G., Monajembashi, S., Greulich, K-O., and Wolfram, J., 1989, Uptake of DNA in chloroplasts of Brassica napus L facilitated by UV-laser micro beam, Eur. J. Cell Biol. 49:73–79.Google Scholar
  83. White, R. M., 1990, The great climate debate,Sci. Am. 263:18–25.CrossRefGoogle Scholar
  84. Woodrow, I. E., 1986, Control of the rate of photosynthetic carbon dioxide fixation, Biochim. Biophys. Acta 851:181–192.CrossRefGoogle Scholar
  85. Woodrow, I. E., Ball, J. T., and Berry, J. A., 1990, Control of photosynthetic carbon dioxide fixation by the boundary layer, stomata and ribulose-1,5-bisphosphate carboxylase/oxygenase, Plant Cell Environ. 13:339–347.CrossRefGoogle Scholar
  86. Yelle, S., Beeson, R. C., Trudel, M. J., and Gosselin, A., 1989, Acclimation of two tomato species to high atmosphere CO2. II. Ribulose-l,5-bisphosphate carboxylase/oxygenase and phosphoenolypyruvate carboxylase, Plant Physiol. 90:1473–1477.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Tristan A. Dyer
    • 1
  1. 1.Molecular Genetics Department, Cambridge LaboratoryJohn Innes Centre for Plant Science ResearchNorwichUK

Personalised recommendations