Structure and Dynamics of the Liver Microsomal Monoxygenase System

  • Christoph Richter
  • Josef Gut
  • Barbara C. Kunz
Part of the Subcellular Biochemistry book series (SCBI, volume 13)

Abstract

Cell membranes regulate a variety of cellular processes ranging from permeability, transport, and excitability to intercellular interaction, morphological differentiation, and fusion. Numerous models have been advanced to characterize the organization of lipids and proteins in cell membranes. Today, there is substantial agreement on the “fluid mosaic” model (Singer and Nicholson, 1972), which emphasizes the dynamic behavior of the membrane components. Both lipids and proteins can undergo a variety of motions: rotational motion around the axis perpendicular to the plane of the membrane; lateral diffusion in the plane of the membrane; in addition, lipids can “flip-flop” (exchange from one monolayer to the other) and undergo trans-gauche conformational changes in the phospholipid acyl chains, which give rise to an increased segmental mobility toward the center of the bilayer. Since the fluid mosaic model has been proposed, its rather crude and generalizing picture has been filled with some details. The refined picture shows a dynamic membrane in which molecular associations are tightly controlled, and in which long-range lateral motions are surprisingly restricted.

Keywords

Cholesterol Anisotropy Oligomer NADH Naphthalene 

Abbreviations

ANS

1-anilino-naphthlene sulfonate

ANM

N-(1-anilinonaph-4yl)maleimide

DPH

1,6-diphenyl-1,3,5-hexatriene

DMPC

dimyristoylphosphatidylcholine

DOPC

dioleylphosphatidylcholine

DPPC

dipalmitoyphosphatidylcholine

E

eosin

EPR

electronparamagnetic

FITC

fluorescein isothiocyanate

FRAP

fluorescence recovery after photobleaching

I-a, I-b, I-c, I-d

P-450 isozymes isolated from rat liver

LM-2, LM-4

P-450 isozymesisolated from rabbit liver

NMR

nuclear magnetic resonance

P-450

microsomal cytochrome P-450

P-450b

P-450 isozyme isolated from rat liver

PA

dipalmitoylphosphatidic acid

PC

phosphatidylcholine

PE

phosphatidylethanolamine

PS

phosphatidylserine

PUFA

polyunsaturated fatty acid

SDS-PAGE

polyacrylamide gel electrophoresis

ST-EPR

saturation transfer EPR

Tc

temperature of the gel to liquid-crystalline phase transition

TRSP

time-resolved spatial photometry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M., and Sabatini, D. D., 1980, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes, Proc. Natl. Acad. Sci. U.S.A. 77: 965.PubMedCrossRefGoogle Scholar
  2. Bernhardt, R., Dao, N. T. N., Stiel, H., Schwarze, W., Friedrich, J., Jänig, G.-R., and Ruckpaul, K., 1983, Modification of cytochrome P-450 with fluorescein isothiocyanate, Biochim. Biophys. Acta. 745: 140–148.PubMedCrossRefGoogle Scholar
  3. Bartosz, G., Szabo, G., Szollosi, J., and Damjanovich, S., 1981, Aging of the erythrocyte. XI. Fluorescence studies on changes in membrane properties, Mech. Aging Dev. 16: 265–274.PubMedCrossRefGoogle Scholar
  4. Bernert, J. T., Jr., and Groce, D. F., 1984, Acute response of rat liver microsomal lipids, lipid peroxidation, and membrane anisotropy to a single oral dose of polybrominated biphenyls, J. Toxicol. Environ. Health 13: 673–687.PubMedCrossRefGoogle Scholar
  5. Black, S. D., and Coon, M. J., 1982, Structural features of liver microsomal NADPH-cyto-chrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region, J. Biol. Chem. 257: 5929–5938.PubMedGoogle Scholar
  6. Black, S. D., French, J. S., Williams, C. H., Jr., and Coon, M. J., 1979, Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM, Biochem. Biophys. Res. Commun. 91: 1528–1535.PubMedCrossRefGoogle Scholar
  7. Cherry, R. J., 1978, Measurement of protein rotational diffusion, Methods Enzymol. 54: 447–461.Google Scholar
  8. Chiang, Y.-L., and Coon, M. J., 1979, Comparative study of two highly purified forms of liver microsomal cytochrome P-450: Circular dichroism and other properties, Arch. Biochem. Biophys. 195: 178–187.PubMedCrossRefGoogle Scholar
  9. Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236: 39–43.PubMedGoogle Scholar
  10. De Pierre, J. W., and Dallner, G., 1975, Structural aspects of the membrane of the endoplasmic reticulum, Biochim. Biophys. Acta. 415: 411–472.Google Scholar
  11. De Pierre, J. W., and Ernster, L., 1977, Enzyme topology of intracellular membranes, Annu. Rev. Biochem. 46: 201–262.CrossRefGoogle Scholar
  12. Dobretsov, G. E., Borschevskaya, T. A., Petrov, V. A., and Vladimirov, Y. A., 1977, The increase of phospholipid bilayer rigidity after lipid peroxidation, FEBS Lett. 84: 125–128.PubMedCrossRefGoogle Scholar
  13. Eichenberger, K., Böhni, P. C., Winterhalter, K. H., Kawato, S., and Richter, C., 1982, Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain, FEBS Lett. 142: 59–62.PubMedCrossRefGoogle Scholar
  14. Esterbauer, H., Cheeseman, K. H., Dianzani, M. U., Poli, G., and Slater, T. F., 1982, Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes, Biochem. J. 208: 129–140.PubMedGoogle Scholar
  15. Ford, R., and Barber, J., 1980, The use of diphenyl hexatriene to monitor the fluidity of the thylakoid membrane, Photobiochem. Photobiophys. 1: 263–270.Google Scholar
  16. Fujii-Kuriyama, Y., Mizukami, Y., Kawajiri, K., Sogawa, K., and Muramatsu, M., 1982, Primary structure of a cytochrome P-450: Coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver, Proc. Natl. Acad. Sci. U.S.A. 79: 2793–2797.PubMedCrossRefGoogle Scholar
  17. Fukuzawa, K., Chida, H., Tokumura, A., and Tsukatani, H., 1981, Antioxidative effect of alphα-tocopherol incorporation into lecithin liposomes on ascorbic acid-Fe2+-induced lipid peroxidation, Arch. Biochem. Biophys. 206: 173–180.PubMedCrossRefGoogle Scholar
  18. Galanopoulou, G., Williams, W. P., and Quinn, P. J., 1982, Structural studies of plant membrane lipid dispersions subjected to autoxidation in the presence of decomposing peroxy-chromate, Biochim. Biophys. Acta. 713: 315–322.Google Scholar
  19. Galeotti, T., Borrello, S., Palombini, G., Masotti, L., Ferrari, M. B., Cavatorta, P., Arcioni, A., Stremmenos, C., and Zannoni, C., 1984a, Lipid peroxidation and fluidity of plasma membranes from rat liver and Morris hepatoma 3924A, FEBS Lett. 169: 169–173.PubMedCrossRefGoogle Scholar
  20. Galeotti, T., Borrello, S., Minotti, G., Palombini, G., Masotti, L., Sartor, G., Cavatorta, P., Arcioni, A., and Zannoni, C., 1984b, Lipid composition, physical state, and lipid peroxidation in tumour membranes, Toxicol. Pathol. 12: 324–330.PubMedCrossRefGoogle Scholar
  21. Gallay, J., Vincent, M., de Paillerets, C., and Alfsen, A., 1981, Relationship between the activity of the 3β-hydroxysteroid dehydrogenase from bovine adrenal cortex microsomes and membrane structure, J. Biol. Chem. 256: 1235–1241.PubMedGoogle Scholar
  22. Gallay, J., Vincent, M., and Alfsen, A., 1982, Dynamic structure of bovine adrenal cortex microsomal membranes studied by time-resolved fluorescence anisotropy of all-trans-1,6-diphenyl-l,3,5-hexatriene, J. Biol. Chem. 257: 4038–4041.PubMedGoogle Scholar
  23. Garfinkel, D., 1958, Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions, Arch. Biochem. Biophys. 77: 493–509.PubMedCrossRefGoogle Scholar
  24. Greinert, R., and Stier, A., 1980, Rotational diffusion of cytochrome P450 in a reconstituted system measured by depolarization of delayed fluorescence, in Biochemistry, Biophysics and Regulation of Cytochrome P-450 (J.-A. Gustafsson et al., eds.), pp. 591–594, Elsevier/ North-Holland Biomedical Press, Amsterdam.Google Scholar
  25. Greinert, R., Staerk, H., Stier, A., and Weiler, A., 1979, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range, J. Biochem. Biophys. Methods. 1: 77–83.PubMedCrossRefGoogle Scholar
  26. Greinert, R., Finch, S. A. E., and Stier, A., 1982a, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding, Biosci. Rep. 2: 991–994.PubMedCrossRefGoogle Scholar
  27. Greinert, R., Finch, S. A. E., and Stier, A., 1982b, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence polarization, Xenobiotica 12: 717–726.PubMedCrossRefGoogle Scholar
  28. Guengerich, F. P., and Davidson, N. K., 1982, Interaction of epoxide hydrolase with itself and other microsomal proteins, Arch. Biochem. Biophys. 215: 462–477.PubMedCrossRefGoogle Scholar
  29. Gum, J. R., and Strobel, H. W., 1979, Purified NADPH-cytochrome P-450 reductase. Interaction with hepatic microsomes and phospholipid vesicles, J. Biol. Chem. 254: 4177–4185.PubMedGoogle Scholar
  30. Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1982, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030–7036.PubMedGoogle Scholar
  31. Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1983, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced crosslinking, J. Biol. Chem. 258: 8588–8594.PubMedGoogle Scholar
  32. Gut, J., Kawato, S., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1985, Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes, Biochim. Biophys. Acta. 817: 217–228.PubMedCrossRefGoogle Scholar
  33. Heinemann, F. S., and Ozols, J., 1983, The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450, J. Biol. Chem. 258: 4195–4201.PubMedGoogle Scholar
  34. Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.PubMedCrossRefGoogle Scholar
  35. Hogeboom, G. H., 1949, Cytochemical studies of mammalian tissues. The distribution of diphospho-pyridine nucleotide-cytochrome c reductase in rat liver fractions, J. Biol. Chem. 177: 847–858.PubMedGoogle Scholar
  36. Hogeboom, G. H., and Schneider, W. C., 1950, Cytochemical studies of mammalian tissues. Isocitric dehydrogenase and triphosphopyridine nucleotide-cytochrome c reductase of mouse liver, J. Biol. Chem. 186: 417–427.PubMedGoogle Scholar
  37. Horecker, B. L., 1950, Triphosphopyridine nucleotide-cytochrome c reductase in liver, J. Biol. Chem. 183: 593–605.Google Scholar
  38. Inouye, K., and Coon, M. J., 1985, Properties of the tryptophan residue in rabbit liver microsomal cytochrome P-450 isozyme 2 as determined by fluorescence, Biochem. Biophys. Res. Commun. 128: 676–682.PubMedCrossRefGoogle Scholar
  39. Kapitza, H. G., and Jacobson, K. A., 1986, Lateral motion of membrane proteins, in Analysis of Membrane Proteins (C. I. Ragan and R. J. Cherry, eds.), pp. 345–375, Chapman and Hall, London.CrossRefGoogle Scholar
  40. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J., 1981, Rotation of cytochrome oxidase in phospholipid vesicles. Investigation of interactions between cytochrome oxidase and between cytochrome oxidase and cytochrome bc1 complex, J. Biol. Chem. 256: 7518–7527.PubMedGoogle Scholar
  41. Kawato, S., Lehner, C., Müller, M., and Cherry, R. J., 1982a, Protein-protein interactions of cytochrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility, J. Biol. Chem. 257: 6470–6476.PubMedGoogle Scholar
  42. Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1982b, Rotation of cytochrome P-450.I. Investigation of protein-protein interaction of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023–7029.PubMedGoogle Scholar
  43. Kinosita, K., Jr., Kawato, S., Ikegami, S., and Orii, Y., 1981, The effect of cytochrome oxidase on lipid dynamics. A nanosecond fluorescence depolarization study, Biochim. Biophys. Acta. 647: 7–17.PubMedCrossRefGoogle Scholar
  44. Klingenberg, M., 1958, Pigments of rat liver microsomes, Arch. Biochem. Biophys. 75: 376–386.PubMedCrossRefGoogle Scholar
  45. Koppel, D. E., and Sheetz, M. P., 1983, A localized pattern photobleaching method for the concurrent analysis of rapid and slow diffusion processes, Biophys. J. 43: 175–181.PubMedCrossRefGoogle Scholar
  46. Kunz, B. C., Rehorek, M., Häuser, H., Winterhalter, K. H., and Richter, C., 1985, Decreased lipid order induced by microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase in model membranes: Fluorescence and electron spin resonance studies, Biochemistry 24: 2889–2895.PubMedCrossRefGoogle Scholar
  47. Lee, J. J., and Kaminsky, L. S., 1986, Fluorescence probing of the function-specific cysteines of rat microsomal NADPH-cytochrome P-450 reductase, Biochem. Biophys. Res. Commun. 134: 393–399.PubMedCrossRefGoogle Scholar
  48. Leighton, J. K., De Brunner-Vossbrinck, B. A., and Kemper, B., 1984, Isolation and sequence analysis of three cloned cDNAs from rabbit liver proteins that are related to rabbit cytochrome P-450 (form 2), the major phenobarbital-inducible form, Biochemistry 23: 204–210.PubMedCrossRefGoogle Scholar
  49. Lemos-Chiarandini, C. D., Frey, A. B., Sabatini, D. D., and Kreibich, G., 1987, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209–219.PubMedCrossRefGoogle Scholar
  50. Lu, A. Y., Junk, K. W., and Coon, M. J., 1969, Resolution of the cytochrome P-450-containing ω- hydroxylation system of liver microsomes into three components, J. Biol. Chem. 244: 3714–3721.PubMedGoogle Scholar
  51. Masotti, L., Cavatorta, P., Ferrari, M. B., Casali, E., Arcioni, A., Zannoni, C., Borrello, S., Minotti, G., and Galeotti, T., 1986, O2-dependent lipid peroxidation does not affect the molecular order in hepatoma microsomes, FEBS Lett. 198: 301–306.PubMedCrossRefGoogle Scholar
  52. Matsuura, S., Masuda, R., Omori, K., Negishi, M., and Tashito, Y., 1981, Distribution and induction of cytochrome P-450 in rat liver nuclear envelope, J. Cell Biol. 91: 212–220.PubMedCrossRefGoogle Scholar
  53. Mcintosh, P. R., Kawato, S., Freedman, R. B., and Cherry, R. J., 1980, Evidence from cross-linking and rotational diffusion studies that cytochrome P-450 can form molecular aggregates in rabbit-liver microsomal membranes, FEBS Lett. 122: 54–58.PubMedCrossRefGoogle Scholar
  54. Nisimoto, Y., Kinosita, K., Jr., Ikegami, A., Kawai, N., Ichihara, I., and Shibata, Y., 1983, Possible association of NADPH-cytochrome P-450 reductase and cytochrome P-450 in reconstituted phospholipid vesicles, Biochemistry 22: 3586–3594.PubMedCrossRefGoogle Scholar
  55. Oesch, F., and Daly, J., 1972, Conversion of naphthalene to tows-naphthalene dihydrodiol: Evidence for the presence of a coupled aryl monooxygenase-epoxide hydrase system in hepatic microsomes, Biochem. Biophys. Res. Commun. 46: 1713–1720.PubMedCrossRefGoogle Scholar
  56. Ohyashiki, T., Ohtsuka, T., and Mohri, T., 1986a, A change in the lipid fluidity of the porcine intestinal brush-border membranes by lipid peroxidation. Studies using pyrene and stearic acid derivatives, Biochim. Biophys. Acta. 861: 311–318.PubMedCrossRefGoogle Scholar
  57. Ohyashiki, T., Ohta, A., Ohtsuka, T., and Mohri, T., 1986b, Effects of lipid peroxidation on the membrane-bound ATPases and lipid fluidity of porcine intestinal brush border membranes, J. Pharmacobiodyn. 9: s–124.Google Scholar
  58. Ohyashiki, T., Ushiro, H., and Mohri, T., 1986c, Effect of α-tocopherol on the lipid peroxidation and fluidity of porcine intestinal brush-border membranes, Biochim. Biophys. Acta. 858: 294–300.PubMedCrossRefGoogle Scholar
  59. Omata, Y., and Ueno, Y., 1985, Fluorescence energy transfer measurements of the complexes of aflatoxin B, and cytochrome P-450, Biochem. Biophys. Res. Commun. 129: 493–498.PubMedCrossRefGoogle Scholar
  60. Omata, T., Ueno, Y., and Aibara, K., 1986, Conformational change of cytochrome P-450 indicated by the measurement of fluorescence-energy transfer, Biochim. Biophys. Acta. 870: 392–400.PubMedCrossRefGoogle Scholar
  61. Ortiz de Montellano, P. R., 1986, Cytochrome P-450 Structure, Mechanism, and Biochemistry, Plenum Press, New York.Google Scholar
  62. Palade, G. E., and Siekevitz, P., 1956, Liver microsomes. An integrated morphological and biochemical study, J. Biophys. Biochem. Cytol. 2: 171–200.PubMedCrossRefGoogle Scholar
  63. Patel, J. M., and Block, E. R., 1986, Nitrogen dioxide-induced changes in cell membrane fluidity and function, Am. Rev. Respir. Dis. 134: 1196–1202.PubMedGoogle Scholar
  64. Peters, R., Peters, J., Tews, K. H., and Bahr, W., 1974, A microfluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta. 367: 282–294.PubMedCrossRefGoogle Scholar
  65. Phillips, A. H., and Langdon, R. G., 1962, Hepatic triphosphopyridine nucleotide-cytochrome c reductase: Isolation, characterization, and kinetic studies, J. Biol. Chem. 237: 2652–2660.PubMedGoogle Scholar
  66. Porter, T. D., and Kasper, C. B., 1985, Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains, Proc. Natl. Acad. Sci. U.S.A. 82: 973–977.PubMedCrossRefGoogle Scholar
  67. RaziNaqvi, K., Rodriguez, J. G., Cherry, R. J., and Chapman, D., 1973, Spectroscopic technique for studying protein rotation in membranes, Nature New Biol. 245: 249–254.CrossRefGoogle Scholar
  68. Rice-Evans, C., and Hochstein, P., 1981, Alterations in erythrocyte membrane fluidity by phenylhydrazine-induced peroxidation of lipids, Biochem. Biophys. Res. Commun. 100: 1537–1542.PubMedCrossRefGoogle Scholar
  69. Rice-Evans, C., Baysal, E., Pashby, D. P., and Hochstein, P., 1985, t-Butyl hydroperoxide-induced perturbations of human erythrocytes as a model for oxidant stress, Biochim. Biophys. Acta. 815: 426–432.PubMedCrossRefGoogle Scholar
  70. Richter, C., Winterhalter, K. H., and Cherry, R. J., 1979, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151–154.PubMedCrossRefGoogle Scholar
  71. Saffman, P. C., and Delbrück, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. U.S.A. 72: 3111–3113.PubMedCrossRefGoogle Scholar
  72. Sato, R., Nishibayashi, H., and Ito, A., 1969, Characterization of two hemoproteins of liver microsomes, in Microsomes and Drug Oxidations (J. R. Gilette, A. H. Conney, G. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 111–132, Academic Press, New York.Google Scholar
  73. Schwarz, D., Pirrwitz, J., and Ruckpaul, K., 1982, Rotational diffusion of cytochrome P-450 in the microsomal membrane—Evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy, Arch. Biochem. Biophys. 216: 322–328.PubMedCrossRefGoogle Scholar
  74. Schwarze, W., Jänig, G. R., Berhardt, R., and Ruckpaul, K., 1983a, Topological studies on cytochrome P-450 with fluorescence methods, Studio Biophys. 93: 233–234.Google Scholar
  75. Schwarze, W., Bernhardt, R., Jänig, G. R., and Ruckpaul, K., 1983b, Fluorescent energy transfer measurements on fluorescein isothiocyanate modified cytochrome P-450 LM2, Biochem. Biophys. Res. Commun. 113: 353–360.PubMedCrossRefGoogle Scholar
  76. Shinitzky, M., 1984, Membrane fluidity in malignancy, adversative and recuperative, Biochim. Biophys. Acta. 738: 251–261.PubMedGoogle Scholar
  77. Shinitzky, M., and Bahrenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta. 515: 367–394.PubMedGoogle Scholar
  78. Singer, S., and Nicholson, G., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.PubMedCrossRefGoogle Scholar
  79. Stier, A., Finch, S. A. E., Greinert, R., and Taniguchi, H., 1985, Membrane protein interactions, in Cytochrome P-450, Biochemistry, Biophysics, and Induction (L. Vereczky and K. Magyar, eds.), pp. 139–146,Google Scholar
  80. Strittmatter, C. F., and Ball, E. G., 1952, A hemochromogen component of liver microsomes, Proc. Natl. Acad. Sci. U.S.A. 38: 19–25.PubMedCrossRefGoogle Scholar
  81. Strittmatter, P., and Velick, S. F., 1956a, The isolation and properties of microsomal cytochrome, J. Biol. Chem. 221: 253–264.PubMedGoogle Scholar
  82. Strittmatter, P., and Velick, S. F., 1956b, A microsomal cytochrome reductase specific for di- phosphopyridine nucleotide, J. Biol. Chem. 221: 277–286.PubMedGoogle Scholar
  83. Taniguchi, H., Imai, Y., and Sato, R., 1980, Protein-protein and lipid-protein interactions in a reconstituted liver microsomal monooxygenase system, in Microsomes, Drug Oxidations, and Chemical Carcinogenesis (M. J. Coon, A. H. Conney, R. W. Eastbrook, H. V. Gelboin, J. R. Gilette, and P. J. O’Brien, eds.), pp. 537–540, Academic Press, New York.Google Scholar
  84. Tarr, G. E., Black, S. D., Fujita, V. S., and Coon, M. J., 1983, Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. U.S.A. 80: 6552–6556.PubMedCrossRefGoogle Scholar
  85. Thomas, D. D., 1978, Large-scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence, Biophys. J. 24: 439–462.PubMedCrossRefGoogle Scholar
  86. Thomas, D. D., 1986, Rotational diffusion of membrane proteins, in Techniques for the Analysis of Membrane Proteins (C. I. Ragan and R. J. Cherry, eds.), pp. 377–431, Chapman and Hall, London.CrossRefGoogle Scholar
  87. Thomas, P. E., Lu, A. Y. H., West, S. B., Ryan, D., Miwa, G. T., and Levin, W., 1977, Accessibility of cytochrome P450 in microsomal membranes: Inhibition of metabolism by antibodies to cytochrome P450, Mol. Pharmacol. 13: 819–831.PubMedGoogle Scholar
  88. Vlasuk, G. P., Ghrayeb, J., Ryan, D., Reik, L., Thomas, P. E., Levin, W., and Waltz, F. G., Jr., 1982, Multiplicity, strain differences, and topology of phenobarbital-induced cytochrome P-450 in rat liver microsomes, Biochemistry 21: 789–798.PubMedCrossRefGoogle Scholar
  89. Vogel, F., and Lumper, L., 1983, Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syw-9,10-dioxabimane, Biochem. J. 215: 159–166.PubMedGoogle Scholar
  90. Wang, H.-P., and Kimura, T., 1976, Purification and characterization of adrenal cortex mitochondrial cytochrome P-450 specific for cholesterol side chain cleavage activity, J. Biol. Chem. 251: 6068–6074.PubMedGoogle Scholar
  91. Williams, C. H., and Kamin, H., 1962, Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver, J. Biol. Chem. 237: 587–595.PubMedGoogle Scholar
  92. Wu, E.-S., and Yang, C. S., 1984, Lateral diffusion of cytochrome P-450 in phospholipid bilayers, Biochemistry 23: 28–33.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Christoph Richter
    • 1
  • Josef Gut
    • 1
  • Barbara C. Kunz
    • 1
  1. 1.Laboratory of BiochemistrySwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations